色天下一区二区三区,少妇精品久久久一区二区三区,中文字幕日韩高清,91精品国产91久久久久久最新毛片

首頁 > 甘肅 > 隴南市 > 數學高中知識點總結,高中必修五數學知識點總結

數學高中知識點總結,高中必修五數學知識點總結

來源:整理 時間:2022-12-20 11:32:11 編輯:好學習 手機版

本文目錄一覽

1,高中必修五數學知識點總結

三角函數和數列

高中必修五數學知識點總結

2,求高中數學的主要知識點

重點和難點有函數,數列,導數,解析幾何等

求高中數學的主要知識點

3,高中數學導數知識點總結

1.簡單的求導公式2.求單調區間3.求函數極值4.最值

高中數學導數知識點總結

4,高中數學知識點總結

可以去這個網站看看 http://www.tl100.com

5,高中數學全部公式及知識點總結

http://wenku.baidu.com/view/a07732687e21af45b307a835.html
http://wenku.baidu.com/view/aa31431cfad6195f312ba6c2.html 謝謝采納,還需什么直接追問哦~~

6,高中數學想掌握最基礎的知識

只要考60--80就要靠一些容易的題就行了。選擇題有很多是不用算出來就可以得到答案,然后填空題要2題,計算題要最容易的題。計算題最后2~~3題你就不要理了,把時間花在自己能拿的分上。能拿的分你要花更多的時間,一定要保證得分。這是考試中的技巧。而最重要是在平時學習中知識的積累,對這方面,你老師比我講的好,認真聽課,努力學習,會有一個好結果的。說了這么多……希望你考的一個好的成績。加油!
努力學習吧,學習是為了自己,送你4個字:腳踏實地!

7,高一數學必修一知識點總結

高一數學必修1第一章知識點總結一、集合有關概念1. 集合的含義2. 集合的中元素的三個特性:(1) 元素的確定性,(2) 元素的互異性,(3) 元素的無序性, 3.集合的表示:(1) 用拉丁字母表示集合:A=(2) 集合的表示方法:列舉法與描述法。? 注意:常用數集及其記法:非負整數集(即自然數集) 記作:N正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R1) 列舉法:2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。3) 語言描述法:例:4) Venn圖:4、集合的分類:(1) 有限集 含有有限個元素的集合(2) 無限集 含有無限個元素的集合(3) 空集 不含任何元素的集合 例:二、集合間的基本關系1.“包含”關系—子集注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2.“相等”關系:A=B (5≥5,且5≤5,則5=5)實例:設 A=即:① 任何一個集合是它本身的子集。A?A②真子集:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)③如果 A?B, B?C ,那么 A?C④ 如果A?B 同時 B?A 那么A=B3. 不含任何元素的集合叫做空集,記為Φ規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。? 有n個元素的集合,含有2n個子集,2n-1個真子集三、集合的運算運算類型 交 集 并 集 補 集定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作A交B),即A B={x|x A,且x B}.由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:A B(讀作A并B),即A B =設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作 ,即CSA= 韋恩圖示 性 質 A A=A A Φ=ΦA B=B AA B A A B BA A=AA Φ=AA B=B AA B AA B B(CuA) (CuB)= Cu (A B)(CuA) (CuB)= Cu(A B)A (CuA)=UA (CuA)= Φ.例題:1.下列四組對象,能構成集合的是 ( )A某班所有高個子的學生 B著名的藝術家 C一切很大的書 D 倒數等于它自身的實數2.集合3.若集合M=4.設集合A= ,B= ,若A B,則 的取值范圍是 5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人,兩種實驗都做錯得有4人,則這兩種實驗都做對的有 人。6. 用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M= .7.已知集合A=二、函數的有關概念1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合注意:1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零; (2)偶次方根的被開方數不小于零; (3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零, (7)實際問題中的函數的定義域還要保證實際問題有意義.? 相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);②定義域一致 (兩點必須同時具備)(見課本21頁相關例2)2.值域 : 先考慮其定義域(1)觀察法 (2)配方法(3)代換法3. 函數圖象知識歸納(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . (2) 畫法A、 描點法:B、 圖象變換法常用變換方法有三種1) 平移變換2) 伸縮變換3) 對稱變換4.區間的概念(1)區間的分類:開區間、閉區間、半開半閉區間(2)無窮區間(3)區間的數軸表示.5.映射一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作f:A→B6.分段函數 (1)在定義域的不同部分上有不同的解析表達式的函數。(2)各部分的自變量的取值情況.(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.補充:復合函數如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。 二.函數的性質1.函數的單調性(局部性質)(1)增函數設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1如果對于區間D上的任意兩個自變量的值x1,x2,當x1注意:函數的單調性是函數的局部性質; (2) 圖象的特點 如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的. (3).函數單調區間與單調性的判定方法 (A) 定義法: ○1 任取x1,x2∈D,且x1 ○2 作差f(x1)-f(x2); ○3 變形(通常是因式分解和配方); ○4 定號(即判斷差f(x1)-f(x2)的正負); ○5 下結論(指出函數f(x)在給定的區間D上的單調性). (B)圖象法(從圖象上看升降) (C)復合函數的單調性 復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減” 注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集. 8.函數的奇偶性(整體性質) (1)偶函數 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數. (2).奇函數 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數. (3)具有奇偶性的函數的圖象的特征 偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱. 利用定義判斷函數奇偶性的步驟: ○1首先確定函數的定義域,并判斷其是否關于原點對稱; ○2確定f(-x)與f(x)的關系; ○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數. (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數的圖象判定 . 9、函數的解析表達式 (1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域. (2)求函數的解析式的主要方法有: 1) 湊配法 2) 待定系數法 3) 換元法 4) 消參法 10.函數最大(小)值(定義見課本p36頁) ○1 利用二次函數的性質(配方法)求函數的最大(小)值 ○2 利用圖象求函數的最大(小)值 ○3 利用函數單調性的判斷函數的最大(小)值: 如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b); 如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b); 例題: 1.求下列函數的定義域: ⑴ ⑵ 2.設函數 的定義域為 ,則函數 的定義域為_ _ 3.若函數 的定義域為 ,則函數 的定義域是 4.函數 ,若 ,則 = 6.已知函數 ,求函數 , 的解析式 7.已知函數 滿足 ,則 = 。 8.設 是R上的奇函數,且當 時, ,則當 時 = 在R上的解析式為 9.求下列函數的單調區間: ⑴ (2) 10.判斷函數 的單調性并證明你的結論. 11.設函數 判斷它的奇偶性并且求證: .
我沒有細說,都是大概。想來樓主關于書上的基礎都能在筆記或書上找到,不明白的在問我我在細說!呵呵!1、集合與函數(集合的概念、集合元素的三個特征、集合的分類、子集的概念、子集的性質、有限集合的子集個數、關于集合的運算:注意交集或并集中“或”“且”的意思,“或”兩者皆可的意思“且”是兩者都有的意思、交集與并集的有關性質、全集與補集的性質、函數的定義、三要素、函數的定義域、函數的值域、函數的單調性、單調區間、奇偶性以及奇偶性的特點) 2、3章說名稱你也不能太明白,知識點太零碎了,我想想怎么弄 在跟你說!呵呵!
沒有
http://read.baidu.com/view/1dc8306b011ca300a6c390f8.html
第一章 集合與函數概念一、集合有關概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。 2、集合的中元素的三個特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性 說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。 (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。 (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。 (4)集合元素的三個特性使集合本身具有了確定性和整體性。 3、集合的表示:非負整數集(即自然數集) 記作:n 正整數集 n*或 n+ 整數集z 有理數集q 實數集r 關于“屬于”的概念 集合的元素通常用小寫的拉丁字母表示,如:a是集合a的元素,就說a屬于集合a 記作 a∈a ,相反,a不屬于集合a 記作 a a 列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。 ①語言描述法:例:②數學式子描述法:例:不等式x-3>2的解集是1.有限集 含有有限個元素的集合 2.無限集 含有無限個元素的集合 3.空集 不含任何元素的集合 例:注意:ba?有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。 反之: 集合a不包含于集合b,或集合b不包含集合a,記作a??b或b??a 2.“相等”關系(5≥5,且5≤5,則5=5)實例:設 a=結論:對于兩個集合a與b,如果集合a的任何一個元素都是集合b的元素,同時,集合b的任何一個元素都是集合a的元素,我們就說集合a等于集合b,即:a=b ① 任何一個集合是它本身的子集。a a ②真子集:如果a b,且a b那就說集合a是集合b的真子集,記作ab(或ba) ③如果 a b, b c ,那么 a c ④ 如果a b 同時 b a 那么a=b 3. 不含任何元素的集合叫做空集,記為φ 規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的運算 1.交集的定義:一般地,由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集. 記作a∩b(讀作"a交b"),即a∩b=2、并集的定義:一般地,由所有屬于集合a或屬于集合b的元素所組成的集合,叫做a,b的并集。記作:a∪b(讀作"a并b"),即a∪b=4、全集與補集 (1)補集:設s是一個集合,a是s的一個子集(即sa?),由s中所有不屬于a的元素組成的集合,叫做s中子集a的補集(或余集) 記作: csa 即 csa =(2)全集:如果集合s含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用u來表示。 (3)性質:⑴cu(c ua)=a ⑵(c ua)∩a=φ ⑶(cua)∪a=u 二、函數的有關概念 1.函數的概念:設a、b是非空的數集,如果按照某個確定的對應關系f,使對于集合a中的任意一個數x,在集合b中都有唯一確定的數f(x)和它對應,那么就稱f:a→b為從集合a到集合b的一個函數.記作: y=f(x),x∈a.其中,x叫做自變量,x的取值范圍a叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零; (2)偶次方根的被開方數不小于零; (3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零 (7)實際問題中的函數的定義域還要保證實際問題有意義. (注意:求出不等式組的解集即為函數的定義域。) 構成函數的三要素:定義域、對應關系和值域 再注意:(1)構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)值域補充 (1)、函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。 3. 函數圖象知識歸納 (1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈a)中的x為橫坐標,函數值y為縱坐標的點p(x,y)的集合c,叫做函數 y=f(x),(x ∈a)的圖象. c上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在c上 . 即記為c=圖象c一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與y軸的直線最多只有一個交點的若干條曲線或離散點組成。 (2) 畫法 a、描點法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點p(x, y),最后用平滑的曲線將這些點連接起來. b、圖象變換法(請參考必修4三角函數) 常用變換方法有三種,即平移變換、伸縮變換和對稱變換 (3)作用: 1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。 3.解區間的概念 (1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示. 4.映射 一般地,設a、b是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合a中的任意一個元素x,在集合b中都有唯一確定的元素y與之對應,那么就稱對應f:a?b為從集合a到集合b的一個映射。記作“f:a?b” 給定一個集合a到b的映射,如果a∈a,b∈b.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象 說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合a、b及對應法則f是確定的;②對應法則有“方向性”,即強調從集合a到集合b的對應,它與從b到a的對應關系一般是不同的;③對于映射f:a→b來說,則應滿足:(ⅰ)集合a中的每一個元素,在集合b中都有象,并且象是唯一的;(ⅱ)集合a中不同的元素,在集合b中對應的象。
文章TAG:數學高中知識點總結數學高中高中知識

最近更新

  • 春和景明,春和景明的意思

    春和景明的意思春光和煦,風景鮮明艷麗。出自范仲淹的《岳陽樓記》:至若春和景明,波瀾不驚,上下天光,一碧萬頃。至若春和景明:春和,春風和煦。景,日光。和應該是和煦的意思吧。。希望能幫 ......

    隴南市 日期:2023-05-06

  • 見往事耳,見往事耳 耳的古今意思 孤常讀書

    見往事耳耳的古今意思孤常讀書耳:罷了(語氣助詞)孤:古時王侯的自稱第一層意思是孫權闡明自己勸呂蒙讀書的目的。孤王并不是想要讓你像博學之士那樣天天研究經史典籍,而是要你瀏覽一些書籍, ......

    隴南市 日期:2023-05-06

  • 玫瑰的花語,玫瑰的花語有哪些

    玫瑰的花語有哪些愛情美麗{0}2,玫瑰花花語是什么捧花玫瑰:幸福之愛紫玫瑰:憂郁、夢幻黃玫瑰:不貞、嫉妒、歡樂、高興、道歉、分開白玫瑰:天真、純潔、尊敬、謙卑粉紅玫瑰:初戀、求愛、 ......

    隴南市 日期:2023-05-06

  • 榴蓮雞煲,榴蓮雞煲的家常做法大全怎么做好吃視頻

    榴蓮雞煲的家常做法大全怎么做好吃視頻主料榴蓮肉100g雞翅根380g紅棗9粒輔料清水適量步驟1.食材:雞翅根和榴蓮肉。2.雞翅根洗凈,焯燙一下。3.將榴蓮肉、雞翅根和洗凈去核的紅棗 ......

    隴南市 日期:2023-05-06

  • 青椒土豆,青椒炒土豆怎么做

    青椒炒土豆怎么做2,青椒土豆的做法步驟圖青椒土豆怎么做好吃1,青椒炒土豆怎么做原料:土豆,青椒,鹽,醋,小紅辣椒,花椒,大蒜,生姜,蔥,味精(隨個人喜好)做法:1.把土豆去皮,切絲 ......

    隴南市 日期:2023-05-06

  • 韭菜餃子,韭菜餃子餡的做法

    韭菜餃子餡的做法韭菜餃子餡的做法韭菜餃子的做法http://www.sijimeishi.com/siji/mianlei/440.html{0}2,韭菜餃子怎么做原料:韭菜1斤, ......

    隴南市 日期:2023-05-06

  • 英語水果單詞大全100個,水果的英文單詞

    水果的英文單詞fruitFruits[frut]意為:水果,果實,成果,結果。這個可以自己從網上搜索,會有你想要的答案,比如具體的水果:香蕉Banana蘋果Apple梨Pear草莓 ......

    隴南市 日期:2023-05-06

  • 甜酸排骨,甜酸排骨的做法

    本文目錄一覽1,甜酸排骨的做法2,甜酸排骨怎么做3,甜酸排骨怎么做4,甜酸排骨怎么弄1,甜酸排骨的做法甜酸排骨的做法:肉排骨1斤斬成小塊,起油鍋少放的油放生姜2片和蔥,把肉排骨放入 ......

    隴南市 日期:2023-05-05

主站蜘蛛池模板: 成都市| 涟源市| 郎溪县| 光山县| 田林县| 五常市| 淄博市| 赣榆县| 栾城县| 普定县| 星子县| 大埔区| 蒲江县| 棋牌| 饶平县| 宁武县| 金沙县| 阳泉市| 奉节县| 曲周县| 永川市| 疏勒县| 无极县| 崇明县| 太康县| 新津县| 拉孜县| 大荔县| 桦甸市| 菏泽市| 马鞍山市| 古蔺县| 台山市| 闽清县| 肥乡县| 万宁市| 库伦旗| 台湾省| 溆浦县| 莎车县| 泰和县|