色天下一区二区三区,少妇精品久久久一区二区三区,中文字幕日韩高清,91精品国产91久久久久久最新毛片

首頁 > 新疆 > 和田地區 > 整式的乘法教案,八上數學整式的乘除

整式的乘法教案,八上數學整式的乘除

來源:整理 時間:2023-08-05 22:22:24 編輯:好學習 手機版

本文目錄一覽

1,八上數學整式的乘除

由題知a+2b=5 3a+4b=11解得 a=1,b=2a+b=3a的2007次方·b3=8

八上數學整式的乘除

2,初一數學整式的乘法

結果是32×10^9,化成科學計數法應該是3.2×10^10
3.2*10的10次方
科學計數法應該是3.2 ×10⒑

初一數學整式的乘法

3,整式的乘法初一下學期

解;第一個剩以3的;3X^2+3X-3=0 兩邊同時加5的結果 所以他的答案為5 用第一個可的;M^3=M-M^2 帶如第二個的;M^+M+2010 因為M^2+M-1=O 所以M^2+M+2010=2011

整式的乘法初一下學期

4,求整式的乘法復習課教案

整式的乘法 同底數冪的乘法。單項式的乘法。冪的乘方。積的乘方。單項式與多項式相乘。多項式的乘法。乘法公式: (a十b)(a一b)=a2-b2 (a±b)2=a2±2ab+b2 (a±b)(a2±ab+ b2)=a3±b3 具體要求: (1)掌握正整數冪的運算性質(同底數冪的乘法,冪的乘方,積的乘方),會用它們熟練地進行運算。 (2)掌握單項式與單項式、單項式與多項式、多項式與多項式相乘的法則,會用它們進行運算。 (3)靈活運用五個乘法公式進行運算(直接用公式不超過三次)。 (4)通過從冪運算到多項式的乘法,再到乘法公式的教學,初步理解“特殊———一般——一特殊”的認識規律。
同底數冪的乘法。單項式的乘法。冪的乘方。積的乘方。單項式與多項式相乘。多項式的乘法。乘法公式: (a十b)(a一b)=a2-b2 (a±b)2=a2±2ab+b2 (a±b)(a2±ab+ b2)=a3±b3 具體要求: (1)掌握正整數冪的運算性質(同底數冪的乘法,冪的乘方,積的乘方),會用它們熟練地進行運算。 (2)掌握單項式與單項式、單項式與多項式、多項式與多項式相乘的法則,會用它們進行運算。 (3)靈活運用五個乘法公式進行運算(直接用公式不超過三次)。 (4)通過從冪運算到多項式的乘法,再到乘法公式的教學,初步理解“特殊———一般——一特殊”的
整式的乘法同底數冪的乘法。單項式的乘法。冪的乘方。積的乘方。單項式與多項式相乘。多項式的乘法。乘法公式:(a十b)(a一b)=a2-b2(a±b)2=a2±2ab+b2(a±b)(a2±ab+b2)=a3±b3具體要求:(1)掌握正整數冪的運算性質(同底數冪的乘法,冪的乘方,積的乘方),會用它們熟練地進行運算。(2)掌握單項式與單項式、單項式與多項式、多項式與多項式相乘的法則,會用它們進行運算。(3)靈活運用五個乘法公式進行運算(直接用公式不超過三次)。(4)通過從冪運算到多項式的乘法,再到乘法公式的教學,初步理解“特殊———一般——一特殊”的認識規律。

5,整式的乘法公式講解

(a+b)(a+b)=(a+b)^2=a^2+2ab+b^2 或者 (a-b) (a-b)=(a-b)^2=a^2-2ab+b^2 歸納 這兩個公式叫做完全平方公式,兩數和(或差)的平方,等于這兩數的平方和,加上(或減去)這兩數積的2倍。 我們通常表示為: (a±b)^2=a^2±2ab+b^2 注: 通常a,b是表示一個整體的代數式,不一定是數,例如:[(3x-y)-(2x+2y)][(3x-y)+(2x+2y)]=5x^2+6xy+y^2 [編輯本段]常見錯誤 完全平方公式中常見錯誤有:①學生難于跳出原有的定式思維,如典型錯誤; (錯因:在公式的基礎上類推,隨意“創造”)②混淆公式;③運算結果中符號錯誤;④變式應用難于掌握。 [編輯本段]學習方法及例題 一、理解公式左右邊特征 (一)學會推導公式(這兩個公式是根據乘方的意義與多項式的乘法法則得到的),真實體會隨意“創造”的不正確性; (二)學會用文字概述公式的含義: 兩數和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍. 與都叫做完全平方公式.為了區別,我們把前者叫做兩數和的完全平方公式,后者叫做兩數差的完全平方公式. (三)這兩個公式的結構特征是: 1、左邊是兩個相同的二項式相乘,右邊是三項式,是左邊二項式中兩項的平方和,加上或減去這兩項乘積的2倍; 2、左邊兩項符號相同時,右邊各項全用“+”號連接;左邊兩項符號相反時,右邊平方項用“+”號連接后再“-”兩項乘積的2倍(注:這里說項時未包括其符號在內); 3、公式中的字母可以表示具體的數(正數或負數),也可以表示單項式或多項式等數學式. (四)兩個公式的統一: 因為 所以兩個公式實際上可以看成一個公式:兩數和的完全平方公式。這樣可以既可以防止公式的混淆又杜絕了運算符號的出錯。 二、把握運用公式四步曲: 1、“察”:計算時,要先觀察題目特點是否符合公式的條件,若不符合,應先變形為符合公式的條件的形式,再利用公式進行計算,若不能變為符合公式條件的形式,則應運用相應乘法法則進行計算. 2、“導”:正確地選用完全平方公式,關鍵是確定式子中a、b分別表示什么數或式. 3、“算”:注意每步的運算依據,即各個環節的算理。 4、“驗”:完成運算后學會檢驗,既回過頭來再反思每步的計算依據和符號等各方面是否正確無誤,又可通過多項式的乘法法則進行驗算,確保萬無一失。 三、掌握運用公式常規四變 (一)、變符號: 例1:運用完全平方公式計算: (1) (2) 分析:本例改變了公式中a、b的符號,處理方法之一:把兩式分別變形為再用公式計算(反思得:);方法二:把兩式分別變形為:后直接用公式計算;方法三:把兩式分別變形為:后直接用公式計算(此法是在把兩個公式統一的基礎上進行,易于理解不會混淆); (二)、變項數: 例2:計算: 分析:完全平方公式的左邊是兩個相同的二項式相乘,而本例中出現了三項,故應考慮將其中兩項結合運用整體思想看成一項,從而化解矛盾。所以在運用公式時,可先變形為或或者,再進行計算. (三)、變結構 例3:運用公式計算: (1)(x+y)·(2x+2y); (2)(a+b)·(-a-b); (3)(a-b)·(b-a) 分析;本例中所給的均是二項式乘以二項式,表面看外觀結構不符合公式特征,但仔細觀察易發現,只要將其中一個因式作適當變形就可以了,即 (1)(x+y)·(2x+2y)=2(x+y)?; (2)(a+b)·(-a-b)=-(a+b)?; (3)(a-b)·(b-a)=-(a-b)? (四)、簡便運算 例4:計算:(1)9992(2)100.12 分析:本例中的999接近1000,100.1接近100,故可化成兩個數的和或差,從而運用完全平方公式計算。即:(1)。 四、學會公式運用中三拓展 1、公式的混用 例5:計算: (l)(x+y+z)(x+y-z) (2)(2x-y+3z)(y-3z-2x) 分析:此例是三項式乘以三項式,特點是:有些項相同,另外的項互為相反數。故可考慮把相同的項和互為相反數的項分別結合構造成平方差公式計算后,再運用完全平方公式等計算。即:(1)(x+y+z)(x+y-z)=[(x+y)+z][(x+y)-z]=… (2)(2x-y+3z)(y-3z+2x)=[2x-(y-3z)][(2x+(y-3z)]=…2、公式的變形: 熟悉完全平方公式的變形式,是相關整體代換求知值的關鍵。 例6:已知實數a、b滿足(a+b)2=10,ab=1。求下列各式的值: (1)a2+b2;(2)(a-b)2 分析:此例是典型的整式求值問題,若按常規思維把a、b的值分別求出來,非常困難;仔細探究易把這些條件同完全平方公式結合起來,運用完全平方公式的變形式很容易找到解決問題的途徑。即:(1)a2+b2=(a+b)2-2ab=… (2)(a-b)2=(a+b)2-4ab=… 3、公式的逆用: 例7:計算: 分析:本題若直接運用乘法公式和法則較繁瑣,仔細分析可發現其結構恰似完全平方公式的右邊,不妨把公式倒過來用可得:==4 (a+b)(a-b)=a^2-b^2 兩個數的和與這兩個數的差的積等于這兩個數的平方差,這個公式就叫做乘法的平方差公式。 [編輯本段]說明 當乘式是兩個數之和以及這兩個數之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現互為相反數的兩項,合并這兩項的結果為零,于是就剩下兩項了。而它們的積等于乘式中這兩個數的平方差,即a^-b^ =(a+b)(a-b) 兩數和於這兩數差的基,等於它們的平方差。 [逆推導平方差公式] a^2-b^2 =a^2-b^2+(ab-ab) =(a^2-ab)+(ab-b^2) =a(a-b)+b(a-b) =(a+b)(a-b) [編輯本段]公式運用 [解方程] x×x-y×y=1991 [思路分析] 利用平方差公式求解 [解題過程] x^2-y^2=1991 (x+y)(x-y)=1991 因為1991可以分成1×1991,11×181 所以如果x+y=1991,x-y=1,解得x=996,y=995 如果x+y=181,x-y=11,x=96,y=85同時也可以是負數 所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995 或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85 供參考!江蘇吳云超祝你學習進步

6,給我一篇整式乘法的教案

整式的乘法公式教案課題: 完全平方公式 教學目標 ①經歷探索完全平方公式的過程,使學生感受從一般到特殊的研究方法,進一步發展符號感和推理能力.②會推導完全平方公式,能說出公式的結構特征,并能運用公式進行簡單計算.③了解公式的幾何背景,進一步培養學生用數形結合的方法解決問題的能力.教學重點 (a±b)2=a2±2ab+b2的推導及應用.教學難點 公式的結構特征及教科書P184例5.教學準備 投影儀;多媒體課件;小黑板.邊長為a、b的兩種正方形卡片每小組一張;長為a、寬為b的長方形卡片每小組一張.教學過程(師生活動) 設計理念引入 同學們,前一節課我們已經探究了一種特殊形式的多項式乘法,學會了平方差公式的一些簡單應用.今天我們在這個基礎上要繼續學習另一種特殊形式的多項式乘法.下面請同學們像上一節課一樣,自己來探究下面的問題: 。在推導公式的過程中,要重視學生對運算依據的理解與敘述,強調推理,培養他們的代數推理能力、用數學語言進行表達的能力。探究 計算下列各式,你能發現它們的運算形式與結果有什么規律嗎? (1)(p+1)2=(p+1)(p+1)=_____ (2)(m+2)2=_____ (3)(p-1)2=(p-1)(p-1)=_____ (4)(m-2)2=_____ 引導學生用自己的語言敘述所發現的規律,允許學生之間互相補充,教師不急于概括. 舉例:再舉幾個這樣的運算例子.讓學生獨立思考,每人在組內舉一個例子(可口述或書寫),然后由其中一個小組的代表來匯報。 (2)這里是對前邊進行的運算的討論,目的是讓學生通過觀察、歸納,鼓勵他們發現這個公式的一些特點,如公式左右邊的特征,便于進一步應用公式計算。驗證 我們再來計算(a+b)2,(a-b)2. 公式的推導既是對上述特例的概括,更是從特殊到一般的歸納證明,在此應注意向學生滲透數學的思想方法:特例—歸納—猜想—驗證一用數學符號表示. 概括 完全平方公式及其形式特征. 教師可以在前面的基礎上繼續鼓勵學生發現這個公式的一些特點:如公式左、右邊的結構,并嘗試說明產生這些特點的原因。 還可以引導學生將(a-b)2的結果用(a+b)2來解釋:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2 (3)對公式(a-b)2=a2-2ab+b2的多角度解釋,是為了加深學生對公式中字母a、b的廣泛意義的理解,并再次讓學生體會加、減法的互相轉化與統一。應用 教科書第182頁例3 運用完全平方公式計算: (1)(4m+n)2 (2)(y-12)2 引導學生用如下的填空形式完成例3:解:(1)∵(4m+n)2是____與____和的平方, 可由學生口答完成,教師多媒體展示結果,提高課堂效率。 (1)正確理解公式中字母的廣泛含義,是正確運用這一公式的關鍵.設計本環節,旨在通過將算式中的各項與公式里的a、b進行對照,進一步體會字母a、b的含義,加深對字母含義廣泛性的理解. (2)在具體計算時,當二項式的項不再是單獨的數或字母時,或者項是小數時,往往容易出現運算錯誤.教科 教科書第183頁例4 運用完全平方公式計算: (1)1022 (2)992 此處可先讓學生獨立思考,然后自主發言,口述解題思路,可先不給出題目中“運用完全平方公式計算”的要求,允許他們算法的多樣化,但要求明白每種算法的局限和優越性. 運用完全平方公式進行數的簡便運算的目的是進一步鞏固完全平方公式,體會符號運算對解決問題的作用,教學時可讓學生自己獨立解決此問題。解釋 (1)現有下圖所示三種規格的卡片各若干張,請你根據二次三項式a2+2ab+b2,選取相應種類和數量的卡片,嘗試拼成一個正方形,并討論該正方形的代數意義: (2)你能根據下圖(教科書第182頁圖15.3—3)說明(a-b)2=a2-2ab十b2嗎? 第(1)小題由小組合作共同完成拼圖游戲,比一比哪個小組快?第(2)小題借助多媒體課件,直觀演示面積的變化,幫助學生聯想代數恒等式:(a-b)2=a2-b2-2b(a-b)=a2-2ab+b2。 (1)重視公式的幾何背景,可以幫助學生運用幾何直觀理解、解決有關代數問題.(2)此處將教科書的圖15.3-2改為由學生自主拼圖得到公式,是因為前一節課學生已初次接觸了這樣的數與形結合解釋公式的思想方法,利用這個拼圖游戲,可進一步促使學生關注幾何與代數的聯系,增進學生的認知和對公式的記憶 (3)教科書的圖15.3-3比較難讀懂,可引導學生合作交流得出代數恒等式。思考 (a+b)2與(-a-b)2相等嗎?(a-b)2與(b-a)2相等嗎?(a-b)2與a2-b2相等嗎?為什么? 組織學生進行討論,通過自主推導,互相合作交流,共同解決難題. 拓展 教科書第184,頁例5 運用乘法公式計算, (1)(x+2y-3)(x-2y+3) (2)(a+b+c)2 講解此例之前可先讓學生自學教科書第183頁的“添括號法則”并完成教科書第184頁練習1.然后給出例5的題目,讓學生思考該選擇哪個公式.第(1)小題的解決關鍵是要引導學生比較兩個因式的各項符號,分別找出符號相同及相反的項,學會運用整體思想,將其與公式中的字母a、b對照,其中-2y+3=-(2y-3),故應運用平方差公式.第(2)小題可將任意兩項之和看作一個整體,然后運用完全平方公式。 在解此例的過程中,應注意邊辨析各項的符號特征,邊對照兩個公式的結構特征,教師應完整詳細地書寫解題過程,幫助學生理解這一公式的拓展應用,突破難點。 (1)“添括號法則”采用自學的方法得出,可培養學生一定的自學能力。 (2)有些整式相乘需要先作適當變形,然后再用公式,在此可通過解題思路的分析,注意公式中字母的廣泛意義,并滲透換元的思想。其中第二小題的結果特征明顯,可作為一個新的乘法公式。小結 談一談:你對完全平方公式有了哪一些認識?它與平方差公式有什么區別和聯系? 梳理知識,形成體系。作業 1. 必做題:教科書第185頁習題15.3第二大題的(1)、(3)、(4)、(5);第三大題的(2);第四大題. 書本上有關完全平方公式的習題量較多,層次也比較明顯, 設計思想 本節課是在學習了《平方差公式》之后進行的,學習的方法與上節課類似,但本課時中的內容多,難點也較多;所以對課堂教學的組織要求就更高.所以在設計活動時,我緊緊圍繞著“完全平方公式如何得到和應用”這一中心問題展開,并根據活動情況不斷地變換問題,以問題為核心調動學生參與活動的興趣與積極性,在每一個教學環節都對學生提出丁不同的要求,使知識層層深入,環環緊扣.
整式的乘法同底數冪的乘法。單項式的乘法。冪的乘方。積的乘方。單項式與多項式相乘。多項式的乘法。乘法公式:(a十b)(a一b)=a2-b2(a±b)2=a2±2ab+b2(a±b)(a2±ab+b2)=a3±b3具體要求:(1)掌握正整數冪的運算性質(同底數冪的乘法,冪的乘方,積的乘方),會用它們熟練地進行運算。(2)掌握單項式與單項式、單項式與多項式、多項式與多項式相乘的法則,會用它們進行運算。(3)靈活運用五個乘法公式進行運算(直接用公式不超過三次)。(4)通過從冪運算到多項式的乘法,再到乘法公式的教學,初步理解“特殊———一般——一特殊”的認識規律。
文章TAG:整式乘法教案數學整式的乘法教案

最近更新

  • 中秋祭月,中秋節又叫中秋祭月

    中秋節又稱中秋節、中秋節、八月節、追月節、拜月節、女兒節或團圓節,是中國漢字文化圈多個民族和國家流行的傳統文化節日,農歷八月十五,Yes中秋Festival,又稱中秋節、月光生日、 ......

    和田地區 日期:2023-05-06

  • 鵝掌風病,鵝掌風得了這病怎么治療

    鵝掌風得了這病怎么治療1、對癥治療。,2、藥物治療(達克寧霜,新腳氣膏)。2,鵝掌風手癬怎么不去用粗手腳裂洗劑啊,好多人都在用,你可以試試啊,我的牛皮癬是服用邵小征醫生的中藥給治愈 ......

    和田地區 日期:2023-05-06

  • 語言學習網站,選擇適合自己的英文學習網站會考通過考試

    除了自身學習能力和努力之外,最重要的因素是找到一個好老師,我一開始就自學這個,學會了通過考試,但是,影響學習效果的因素很多,現在學口語的學生很多網站,但是每個人的性格和喜好都不一樣 ......

    和田地區 日期:2023-05-06

  • 衛生委員競選稿,競選衛生委員演講稿

    競選衛生委員演講稿1.我這次競選的是我自信我能勝任這一職。“做事要腳踏實地,一步一個腳印的去做?!边@是小時候父母常對我說的一句話,我是一個做事十分認真踏實的人,任何事不做則已,做則 ......

    和田地區 日期:2023-05-06

  • 安靜地英語,安靜地用英文怎么說

    安靜地用英文怎么說2,安靜地單詞怎么寫1,安靜地用英文怎么說quietly安靜地為你解答,如有幫助請采納,如對本題有疑問可追問,Goodluck!2,安靜地單詞怎么寫朋友,英語里至 ......

    和田地區 日期:2023-05-06

  • 新生兒臍炎,預防新生兒臍炎需注意哪些事項?

    6.臍帶脫落后,如臍窩處仍有分泌物,可用1.5碘酒涂抹臍窩,每日兩次,新生兒在臍帶脫落前,不要把孩子放在盆里洗澡,最好用搓澡的方式,因為浸泡臍帶會延緩脫落,容易導致感染,3.新生兒 ......

    和田地區 日期:2023-05-06

  • 截圖按什么快捷鍵,手機截屏的快捷鍵是什么

    手機截屏的快捷鍵是什么安卓機可以試試音量-鍵+電源鍵蘋果是home+電源鍵電源鍵+音量減鍵同時按住3秒!蘋果手機的截屏快捷鍵是同時長按:“home鍵+電源鍵”安卓手機的截屏快捷鍵是 ......

    和田地區 日期:2023-05-05

  • 電腦內存在哪里看,怎么看電腦的內存

    本文目錄一覽1,怎么看電腦的內存2,怎么查看電腦運行內存3,怎么查看電腦內存4,如何查看電腦內存5,電腦的內存在那看1,怎么看電腦的內存找到電腦圖標右鍵屬性。{0}2,怎么查看電腦 ......

    和田地區 日期:2023-05-05

主站蜘蛛池模板: 宜兰县| 多伦县| 佛冈县| 新龙县| 方城县| 墨竹工卡县| 铜鼓县| 克拉玛依市| 安丘市| 郎溪县| 哈巴河县| 新源县| 淮滨县| 道真| 桃源县| 上高县| 彭州市| 北安市| 双柏县| 凉城县| 灌阳县| 云霄县| 锦屏县| 永清县| 咸宁市| 岳阳市| 松桃| 陇西县| 阿图什市| 兴化市| 吉林市| 射阳县| 寿光市| 阳原县| 嫩江县| 黎平县| 荥阳市| 汤原县| 嘉黎县| 咸丰县| 疏附县|