色天下一区二区三区,少妇精品久久久一区二区三区,中文字幕日韩高清,91精品国产91久久久久久最新毛片

首頁 > 江西 > 萍鄉(xiāng)市 > 因式分解教案,因式分解數(shù)學(xué)

因式分解教案,因式分解數(shù)學(xué)

來源:整理 時間:2022-12-30 15:32:03 編輯:好學(xué)習(xí) 手機(jī)版

本文目錄一覽

1,因式分解數(shù)學(xué)

x^10-y^10=(x^5)^2-(y^5)^2=(x^5-y^5)(x^5+y^5)

因式分解數(shù)學(xué)

2,數(shù)學(xué)因式分解

原式=xy(x2-2xy+y2)=xy(x-y)2 當(dāng)x-y=1,xy=3時, 原式=3×12=3
原式=xy(x平方-2xy+y平方) =xy(x-y)平方 =3*1*1 =3

數(shù)學(xué)因式分解

3,人教版八年級的因式分解

x^2+2x+1-y^2=(X+1)^2-Y^2=(X+1+Y)(X+1-Y) 答對了吧? 謝謝樓主 呵呵
x^2+2x+1-y^2 (x+1)^2=y^2
原式=(x+1)^2-y^2=(x+1+y)(x+1-y)

人教版八年級的因式分解

4,數(shù)學(xué)因式分解

m^2-4n^2+4n-1 =m^2-(4n^2-4n+1) =m^2-(2n-1)^2 =(m+2n-1)(m-2n+1)
m^2-4n^2+4n-1 =m^2-(4n^2-4n+1) =m^2-(2n-1)^2
m^2-(2n-1)^2=(m-2n+1)(m+2n-1)

5,初二數(shù)學(xué)因式分解

(2m-n)(4m+5n) 詳細(xì)建議你參考一下因式分解的方法,然后依次類推 方法是最重要的!!! 十字相乘法 這種方法有兩種情況。 ①x^2+(p+q)x+pq型的式子的因式分解 這類二次三項式的特點是:二次項的系數(shù)是1;常數(shù)項是兩個數(shù)的積;一次項系數(shù)是常數(shù)項的兩個因數(shù)的和。因此,可以直接將某些二次項的系數(shù)是1的二次三項式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) . ②kx^2+mx+n型的式子的因式分解 如果如果有k=ac,n=bd,且有ad+bc=m時,那么kx^2+mx+n=(ax+b)(cx+d). 圖示如下: a b × c d 例如:因為 1 -3 × 7 2 -3×7=-21,1×2=2,且2-21=-19, 所以7x^2-19x-6=(7x+2)(x-3). 十字相乘法口訣:首尾分解,交叉相乘,求和湊中

6,這4道題用因式分解法做九年級的題要詳細(xì)步驟最好是寫到紙

給你篇教案。還有什么需要的,找我。 課題:因式分解——提公因式法(第一課時) 一、目標(biāo)定位 1.教材及所處的地位分析 提公因式法是華東版初中《數(shù)學(xué)》第三冊第10章第一節(jié)。因式分解與上一章整式和下一章分式聯(lián)系極為密切,它是因數(shù)分解的延伸和推廣,是多項式乘法的逆運算,在分式通分和約分中有著直接的應(yīng)用。本節(jié)的提公因式法是最常用,最基本也是最重要的分解方法之一,是后繼學(xué)習(xí)其他分解方法的基礎(chǔ)。 本節(jié)課提公因式僅限于公固式是單項式的情形。 2、教學(xué)目標(biāo) (1)初步了解因式式分解的意義,知道因式分解與整式乘法是互逆運算。 (2)會找公因式 (3)會用提取公因式法分解因式 (4)體會數(shù)學(xué)知識之間是相互聯(lián)系的,是可以相互轉(zhuǎn)化的。 (5)進(jìn)一步培養(yǎng)學(xué)生觀察、分析、歸納的能力。 3、重點、難點、關(guān)鍵 重點:提公因式法是因式分解最基本最常用的方法,因此它是本節(jié)重點。 難點關(guān)鍵:確定公因式。 二、教法構(gòu)想 1、教師是學(xué)生學(xué)習(xí)、發(fā)展的引導(dǎo)者。教學(xué)中應(yīng)根據(jù)學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生通過對新舊知識的類比,了解因式分解的意義,通過問題和題組讓學(xué)生操作、觀察、比較、分析、交流、歸納從而得出確定公固式的步驟。啟發(fā)誘導(dǎo)應(yīng)貫穿于教學(xué)過程始終。 2、充分地運用媒體、題組保證教學(xué)容量,提高教學(xué)效率。 三、學(xué)法引導(dǎo) 在學(xué)生已有知識的基礎(chǔ)上通過觀察類比得到因式分解意義,根據(jù)由具體到一般的思維方式,通過操作,相互合作交流歸納確定公因式的步驟及提公因式方法。積極倡導(dǎo)學(xué)生動腦、動手、動口,親身經(jīng)歷體驗數(shù)學(xué)學(xué)習(xí)的過程。 四、程序展望 1、揭示課題 (1)提出問題1:請同學(xué)們計算 3.1×3.14+1.5×3.14+0.4×3.14=? (2)填空并觀察、思考 2×3= m(a+b+c)= 2×2×3= (x+3)(x-3)= 2×3×3= (a-3)(a-3)= 因數(shù)分解 乘法運算 (因式分解) 整式乘法 板書:因式分解(分解因式):把一個多項式化成幾個整式積的形式叫做因式分解。 (3)設(shè)問:整式乘法和因式分解有什么關(guān)系? 設(shè)計意圖:通過一個學(xué)生能解決的問題,采用以舊引新方式方法得出課題。在教師的引導(dǎo)下學(xué)生自己觀察、思考、類比歸納出因式分解的意義 ⅱ.講解新課 因式分解就是將 幾個式的 (1) 確定公因式 觀察:3.1×3.14+1.5×3.14+0.4×3.14=3.14×(3.1+1.5+0.4) ma+mb+mc=m(a+b+c) 提出問題:兩個等式的左邊各項有何共同特點?(含有相同因式) 引出公因式概念 練習(xí)1:找出下列多項式的公因式(學(xué)生交流,師巡視指導(dǎo)) (1)ax+ay (2)6a+14b (3)2a2+4a (4)4m2-8mm (5)8a2x+6ax2-12a3x3 據(jù)此交流小結(jié)確定公因式的步驟: 1、定系數(shù):取各項系數(shù)的最大公約數(shù); 2、定字母:取各項都有的字母,其次數(shù)取最低次數(shù)。 練習(xí)2(鞏固) 說出下列各多項式各項的公因式 (1)3mx-6m (2)6x3-18x2 (3)2x3y2-12x2y4+16xy6 設(shè)計意圖:本環(huán)節(jié)是教學(xué)內(nèi)容的難點關(guān)鍵,通過由具體的數(shù)到一般的式,結(jié)合提出的問題得出公因式的概念,再結(jié)合題組,讓學(xué)生自行操作,相互交流教師指導(dǎo)歸納,小結(jié)確定公因式的步驟,培養(yǎng)學(xué)生合作學(xué)習(xí)蝗意識,體驗學(xué)習(xí)成功的快樂。 (2)提公因式法 再觀察等式ma+mb+mc=m(a+b+c) 例1.分解因式4m2-8mm(教師板演示范) 解:4m2-8mn =4m·m-4m·n 確定公因式 =4m(m-n) 提取公因式 鞏固練習(xí):分解因式 (1)ma+na2 (2)6a2-10ab (3)a4-3a3-2a2 (3)3x2y4-9x4y2+12x2y2 設(shè)計意圖:教師例題示范的目的使學(xué)生體會到提公因式法的過程確定二提取。 例2:把-3ax2+6axy-3a分解因式 設(shè)計意圖:雖是例題,但有前面知識鋪墊可以讓學(xué)生親自動手,讓他們體會不同方法的優(yōu)劣及自己發(fā)現(xiàn)在解題時易出現(xiàn)的錯誤。 ⅲ、學(xué)標(biāo)檢測 (1)辨別正誤 ①3a2x-3ay+6y=3y(a2-a+2) ②-x2+xy-xz=x(x+y-z) ③ab+5ab-b=b(a2+5a) (2)填空 ①6a+14b=__________(3a+7b) ②2πr+2πr+2π=2π( ) ③6x3-18x2=_________(x-3) ④-7a2+21a=-7a( ) (3)把下列各項分解因式 ①np-nq ②a4-ab2 ③9y3+6y2-18y ④8m2n+4mn2+32mn ⑤-x3y-x2y2+xy ⑥-11a2b+121ab2-33b3 設(shè)計意圖:練習(xí)(1)讓學(xué)生知道因式分解結(jié)果是否正確可用整式乘法來檢驗。練習(xí)(2)(3)旨在檢測教學(xué)目標(biāo)是否達(dá)成,對學(xué)習(xí)成果進(jìn)行評價。 ⅳ、小結(jié) 通過本節(jié)課的學(xué)習(xí),你有哪些收獲? (1)學(xué)習(xí)了哪些新知識?這些知識與以前知識有什么聯(lián)系? (2)學(xué)到了哪些數(shù)學(xué)方法? (3)你的哪些能力有所提高 設(shè)計意圖:使學(xué)生從整體上了解本節(jié)課的學(xué)習(xí)內(nèi)容,通過自省小結(jié)以順利完成知識的同化與順應(yīng)。

7,公因式分解

8a-(9b平方)=(2a+3b)(2a-3b)8+(4x)+2y=2(2x+y+4)a平方-4b平方=(a+2b)(a-2b)x2+2(a+b)x+(a+b)平方=(_x+a+b_)2
給你篇教案。還有什么需要的,找我。 課題:因式分解——提公因式法(第一課時) 一、目標(biāo)定位 1.教材及所處的地位分析 提公因式法是華東版初中《數(shù)學(xué)》第三冊第10章第一節(jié)。因式分解與上一章整式和下一章分式聯(lián)系極為密切,它是因數(shù)分解的延伸和推廣,是多項式乘法的逆運算,在分式通分和約分中有著直接的應(yīng)用。本節(jié)的提公因式法是最常用,最基本也是最重要的分解方法之一,是后繼學(xué)習(xí)其他分解方法的基礎(chǔ)。 本節(jié)課提公因式僅限于公固式是單項式的情形。 2、教學(xué)目標(biāo) (1)初步了解因式式分解的意義,知道因式分解與整式乘法是互逆運算。 (2)會找公因式 (3)會用提取公因式法分解因式 (4)體會數(shù)學(xué)知識之間是相互聯(lián)系的,是可以相互轉(zhuǎn)化的。 (5)進(jìn)一步培養(yǎng)學(xué)生觀察、分析、歸納的能力。 3、重點、難點、關(guān)鍵 重點:提公因式法是因式分解最基本最常用的方法,因此它是本節(jié)重點。 難點關(guān)鍵:確定公因式。 二、教法構(gòu)想 1、教師是學(xué)生學(xué)習(xí)、發(fā)展的引導(dǎo)者。教學(xué)中應(yīng)根據(jù)學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生通過對新舊知識的類比,了解因式分解的意義,通過問題和題組讓學(xué)生操作、觀察、比較、分析、交流、歸納從而得出確定公固式的步驟。啟發(fā)誘導(dǎo)應(yīng)貫穿于教學(xué)過程始終。 2、充分地運用媒體、題組保證教學(xué)容量,提高教學(xué)效率。 三、學(xué)法引導(dǎo) 在學(xué)生已有知識的基礎(chǔ)上通過觀察類比得到因式分解意義,根據(jù)由具體到一般的思維方式,通過操作,相互合作交流歸納確定公因式的步驟及提公因式方法。積極倡導(dǎo)學(xué)生動腦、動手、動口,親身經(jīng)歷體驗數(shù)學(xué)學(xué)習(xí)的過程。 四、程序展望 1、揭示課題 (1)提出問題1:請同學(xué)們計算 3.1×3.14+1.5×3.14+0.4×3.14=? (2)填空并觀察、思考 2×3= m(a+b+c)= 2×2×3= (x+3)(x-3)= 2×3×3= (a-3)(a-3)= 因數(shù)分解 乘法運算 (因式分解) 整式乘法 板書:因式分解(分解因式):把一個多項式化成幾個整式積的形式叫做因式分解。 (3)設(shè)問:整式乘法和因式分解有什么關(guān)系? 設(shè)計意圖:通過一個學(xué)生能解決的問題,采用以舊引新方式方法得出課題。在教師的引導(dǎo)下學(xué)生自己觀察、思考、類比歸納出因式分解的意義 ⅱ.講解新課 因式分解就是將 幾個式的 (1) 確定公因式 觀察:3.1×3.14+1.5×3.14+0.4×3.14=3.14×(3.1+1.5+0.4) ma+mb+mc=m(a+b+c) 提出問題:兩個等式的左邊各項有何共同特點?(含有相同因式) 引出公因式概念 練習(xí)1:找出下列多項式的公因式(學(xué)生交流,師巡視指導(dǎo)) (1)ax+ay (2)6a+14b (3)2a2+4a (4)4m2-8mm (5)8a2x+6ax2-12a3x3 據(jù)此交流小結(jié)確定公因式的步驟: 1、定系數(shù):取各項系數(shù)的最大公約數(shù); 2、定字母:取各項都有的字母,其次數(shù)取最低次數(shù)。 練習(xí)2(鞏固) 說出下列各多項式各項的公因式 (1)3mx-6m (2)6x3-18x2 (3)2x3y2-12x2y4+16xy6 設(shè)計意圖:本環(huán)節(jié)是教學(xué)內(nèi)容的難點關(guān)鍵,通過由具體的數(shù)到一般的式,結(jié)合提出的問題得出公因式的概念,再結(jié)合題組,讓學(xué)生自行操作,相互交流教師指導(dǎo)歸納,小結(jié)確定公因式的步驟,培養(yǎng)學(xué)生合作學(xué)習(xí)蝗意識,體驗學(xué)習(xí)成功的快樂。 (2)提公因式法 再觀察等式ma+mb+mc=m(a+b+c) 例1.分解因式4m2-8mm(教師板演示范) 解:4m2-8mn =4m·m-4m·n 確定公因式 =4m(m-n) 提取公因式 鞏固練習(xí):分解因式 (1)ma+na2 (2)6a2-10ab (3)a4-3a3-2a2 (3)3x2y4-9x4y2+12x2y2 設(shè)計意圖:教師例題示范的目的使學(xué)生體會到提公因式法的過程確定二提取。 例2:把-3ax2+6axy-3a分解因式 設(shè)計意圖:雖是例題,但有前面知識鋪墊可以讓學(xué)生親自動手,讓他們體會不同方法的優(yōu)劣及自己發(fā)現(xiàn)在解題時易出現(xiàn)的錯誤。 ⅲ、學(xué)標(biāo)檢測 (1)辨別正誤 ①3a2x-3ay+6y=3y(a2-a+2) ②-x2+xy-xz=x(x+y-z) ③ab+5ab-b=b(a2+5a) (2)填空 ①6a+14b=__________(3a+7b) ②2πr+2πr+2π=2π( ) ③6x3-18x2=_________(x-3) ④-7a2+21a=-7a( ) (3)把下列各項分解因式 ①np-nq ②a4-ab2 ③9y3+6y2-18y ④8m2n+4mn2+32mn ⑤-x3y-x2y2+xy ⑥-11a2b+121ab2-33b3 設(shè)計意圖:練習(xí)(1)讓學(xué)生知道因式分解結(jié)果是否正確可用整式乘法來檢驗。練習(xí)(2)(3)旨在檢測教學(xué)目標(biāo)是否達(dá)成,對學(xué)習(xí)成果進(jìn)行評價。 ⅳ、小結(jié) 通過本節(jié)課的學(xué)習(xí),你有哪些收獲? (1)學(xué)習(xí)了哪些新知識?這些知識與以前知識有什么聯(lián)系? (2)學(xué)到了哪些數(shù)學(xué)方法? (3)你的哪些能力有所提高 設(shè)計意圖:使學(xué)生從整體上了解本節(jié)課的學(xué)習(xí)內(nèi)容,通過自省小結(jié)以順利完成知識的同化與順應(yīng)。
文章TAG:因式分解教案因式分解分解教案

最近更新

主站蜘蛛池模板: 宁化县| 淮滨县| 江西省| 正定县| 太和县| 邵东县| 曲阳县| 乌兰察布市| 保定市| 太谷县| 华宁县| 五华县| 正阳县| 巢湖市| 会理县| 上饶市| 麻阳| 汤阴县| 图木舒克市| 亚东县| 中方县| 张北县| 宽城| 海盐县| 安阳县| 荔浦县| 安西县| 迁安市| 阿拉尔市| 临泉县| 延庆县| 东乌珠穆沁旗| 会理县| 鱼台县| 大荔县| 遂宁市| 安龙县| 岳阳市| 新竹县| 达州市| 遵化市|