色天下一区二区三区,少妇精品久久久一区二区三区,中文字幕日韩高清,91精品国产91久久久久久最新毛片

首頁 > 重慶 > 合川區(qū) > 數(shù)學(xué)大全,數(shù)學(xué)數(shù)學(xué)數(shù)學(xué)

數(shù)學(xué)大全,數(shù)學(xué)數(shù)學(xué)數(shù)學(xué)

來源:整理 時間:2023-01-15 18:28:06 編輯:好學(xué)習(xí) 手機(jī)版

1,數(shù)學(xué)數(shù)學(xué)數(shù)學(xué)

1/x+4/y=1/4(x+y)*(1/x+4/y)=1/4(y/x+4x/y+5)>=1/4(2 根號下y/x*4x/y +5) =9/4 根號不會打 所以 m ≤9/4 考察均值不等式定理及其靈活運用
m≤9/4

數(shù)學(xué)數(shù)學(xué)數(shù)學(xué)

2,數(shù)學(xué)數(shù)學(xué)題目

乙獨做20/80%=25天完成 所以甲乙丙每天各完成1/20,1/25,1/10 所以合作4天完成4*(1/20+1/25+1/10)=19/25
(1/20+0.8x1/20+1/10)x4=19/25
解:假設(shè)這個工程為單位1 則甲的工作效率為1/20 乙的工作效率為1/20×4/5=1/25 丙的工作效率為1/10 所以(1/20+1/25+1/10)×4/1=19/25 即合作4天完成二十五分之十九

數(shù)學(xué)數(shù)學(xué)題目

3,數(shù)學(xué)數(shù)學(xué)數(shù)學(xué)

設(shè)過點P(0,2)的直線為y=kx+2 與拋物線方程y=ax2聯(lián)立 得:ax2-kx-2=0 由韋達(dá)定理,得:x1+x2=k/a,x1x2=-2/a.又y1=kx1+2,y2=kx2+2∴設(shè)A(x1,y1),B(x2,y2).(1)y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=-2k2/a+2k2/a+4=4即A、B兩點縱坐標(biāo)的乘積是4(2)過A作AC⊥x軸于C,過B作BD⊥x軸于D∵∠AOB=90° 又△AOC∽△OBD ∴AC/OD=OC/BD即y1/x2=-x1/y2∴x1x2=-y1y2 即-2/a=-4 ∴a=1/2.拋物線的解析式y(tǒng)=1/2x2.S(△AOB)=S(四邊形ACDB)-S(△ACO)-S(△BOD)=(y1+y2)(x2-x1)/2+x1y1/2-x2y2/2=(x2y1-x1y2)/2=[x2(kx1+2)-x1(ky2+2)]/2=x2-x1 =4√2∴32=(x2-x1)2=(x1+x2)2-4x1x2=4k2+16 ∴k=±2∴直線AB的解析式為y=2x+2或y=-2x+2.

數(shù)學(xué)數(shù)學(xué)數(shù)學(xué)

4,數(shù)學(xué) 數(shù)學(xué)

由a分之b存在,可知a不等于0則有a+b一定為0即 a+b=0, a =-b則b只能等于1,即b=1, a=-1a的2011次方加b的2010次方=-1+1=0
因為有b/a,所以a不等于0,有a+b=0,則a=-b,b/a=-1,有b=1,a=-1; a^2011+b^2011=-1+1=0
∵ 0 is not equal to 1case 1if 1= b/a => a= b (a is not equal to 0) ---(1)and case 1.1 if a= 0 contradict (1) (rejected )and case 1.2 if a=b/a => a^2 = b then from(1) a^2-a = 0 => a= 0 (rejected) a = 1 => b =1 case 2if 1= band case 2.1 if a=0 and b/a does not exist (rejected)and case 2.2 if a= b/a => a^2 = b --(2) and a+b = 0 from (2) a^2 - a = 0 ==> a=1 or 0(rejected) when a=1 =>b =1 from case 1 and case 2, we geta=1 b=1 #
1,a,a+b0,b,b/a,所以a=0或a+b=0,若a=0,則b/a無意義所以a+b=0a=-b,b/a=-1所以三個數(shù)是1,a,0或0,b,-1所以a=-1,b=0 ∴所求式子的結(jié)果為-1

5,數(shù)學(xué)公式大全從小學(xué)高中

1 每份數(shù)×份數(shù)=總數(shù) 總數(shù)÷每份數(shù)=份數(shù) 總數(shù)÷份數(shù)=每份數(shù) 2 1倍數(shù)×倍數(shù)=幾倍數(shù) 幾倍數(shù)÷1倍數(shù)=倍數(shù) 幾倍數(shù)÷倍數(shù)=1倍數(shù) 3 速度×?xí)r間=路程 路程÷速度=時間 路程÷時間=速度 4 單價×數(shù)量=總價 總價÷單價=數(shù)量 總價÷數(shù)量=單價 5 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 6 加數(shù)+加數(shù)=和 和-一個加數(shù)=另一個加數(shù) 7 被減數(shù)-減數(shù)=差 被減數(shù)-差=減數(shù) 差+減數(shù)=被減數(shù) 8 因數(shù)×因數(shù)=積 積÷一個因數(shù)=另一個因數(shù) 9 被除數(shù)÷除數(shù)=商 被除數(shù)÷商=除數(shù) 商×除數(shù)=被除數(shù) 小學(xué)數(shù)學(xué)圖形計算公式 1 正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a 2 正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a 3 長方形 C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab 4 長方體 V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5 三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6 平行四邊形 s面積 a底 h高 面積=底×高 s=ah 7 梯形 s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圓形 S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏ 9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長 (1)側(cè)面積=底面周長×高 (2)表面積=側(cè)面積+底面積×2 (3)體積=底面積×高 (4)體積=側(cè)面積÷2×半徑 10 圓錐體 v:體積 h:高 s;底面積 r:底面半徑 體積=底面積×高÷3 總數(shù)÷總份數(shù)=平均數(shù) 和差問題的公式 (和+差)÷2=大數(shù) (和-差)÷2=小數(shù) 和倍問題 和÷(倍數(shù)-1)=小數(shù) 小數(shù)×倍數(shù)=大數(shù) (或者 和-小數(shù)=大數(shù)) 差倍問題 差÷(倍數(shù)-1)=小數(shù) 小數(shù)×倍數(shù)=大數(shù) (或 小數(shù)+差=大數(shù)) 樹問題 1 非封閉線路上的植樹問題主要可分為以下三種情形: ⑴如果在非封閉線路的兩端都要植樹,那么: 株數(shù)=段數(shù)+1=全長÷株距-1 全長=株距×(株數(shù)-1) 株距=全長÷(株數(shù)-1) ⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那么: 株數(shù)=段數(shù)=全長÷株距 全長=株距×株數(shù) 株距=全長÷株數(shù) ⑶如果在非封閉線路的兩端都不要植樹,那么: 株數(shù)=段數(shù)-1=全長÷株距-1 全長=株距×(株數(shù)+1) 株距=全長÷(株數(shù)+1) 2 封閉線路上的植樹問題的數(shù)量關(guān)系如下 株數(shù)=段數(shù)=全長÷株距 全長=株距×株數(shù) 株距=全長÷株數(shù) 盈虧問題 (盈+虧)÷兩次分配量之差=參加分配的份數(shù) (大盈-小盈)÷兩次分配量之差=參加分配的份數(shù) (大虧-小虧)÷兩次分配量之差=參加分配的份數(shù) 相遇問題 相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間 追及問題 追及距離=速度差×追及時間 追及時間=追及距離÷速度差 速度差=追及距離÷追及時間 流水問題 順流速度=靜水速度+水流速度 逆流速度=靜水速度-水流速度 靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2 濃度問題 溶質(zhì)的重量+溶劑的重量=溶液的重量 溶質(zhì)的重量÷溶液的重量×100%=濃度 溶液的重量×濃度=溶質(zhì)的重量 溶質(zhì)的重量÷濃度=溶液的重量 利潤與折扣問題 利潤=售出價-成本 利潤率=利潤÷成本×100%=(售出價÷成本-1)×100% 漲跌金額=本金×漲跌百分比 折扣=實際售價÷原售價×100%(折扣<1) 利息=本金×利率×?xí)r間 稅后利息=本金×利率×?xí)r間×(1-20%) 我只有小學(xué)的誒。、、
只有高中的

6,數(shù)學(xué)符號大全

數(shù)學(xué)符號有: ≈ ≡ ≠ = ≤≥ < > ≮ ≯ ∷ ± + - × ÷ / ∫ ∮ ∝ ∞ ∧ ∨ ∑ ∏ ∪ ∩ ∈ ∵ ∴ ? ‖ ∠ ? ≌ ∽ √ () 【】{} Ⅰ Ⅱ ⊕ ?∥α β γ δ ε δ ε ζ Γ。一、數(shù)學(xué)符號1、數(shù)學(xué)符號的發(fā)明及使用比數(shù)字要晚,但其數(shù)量卻超過了數(shù)字。2、現(xiàn)在常用的數(shù)學(xué)符號已超過了200個,其中,每一個符號都有一段有趣的經(jīng)歷。二、運算符號1、如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的并集(∪),交集(∩),根號(√ ̄),對數(shù)(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。三、性質(zhì)符號1、如正號“+”,負(fù)號“-”,正負(fù)號(以及與之對應(yīng)使用的負(fù)正號)。四、省略符號1、如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數(shù))。2、雙曲正弦函數(shù)(sinh),x的函數(shù)(f(x)),極限(lim),角(∠)。
數(shù)學(xué)符號有: ≈ ≡ ≠ = ≤≥ < > ≮ ≯ ∷ ± + - × ÷ / ∫ ∮ ∝ ∞ ∧ ∨ ∑ ∏ ∪ ∩ ∈ ∵ ∴ ? ‖ ∠ ? ≌ ∽ √ () 【】{} Ⅰ Ⅱ ⊕ ?∥α β γ δ ε δ ε ζ Γ。一、數(shù)學(xué)符號1、數(shù)學(xué)符號的發(fā)明及使用比數(shù)字要晚,但其數(shù)量卻超過了數(shù)字。2、現(xiàn)在常用的數(shù)學(xué)符號已超過了200個,其中,每一個符號都有一段有趣的經(jīng)歷。二、運算符號1、如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的并集(∪),交集(∩),根號(√ ̄),對數(shù)(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。三、性質(zhì)符號1、如正號“+”,負(fù)號“-”,正負(fù)號(以及與之對應(yīng)使用的負(fù)正號)。四、省略符號1、如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數(shù))。2、雙曲正弦函數(shù)(sinh),x的函數(shù)(f(x)),極限(lim),角(∠)。
數(shù)學(xué)符號有: ≈ ≡ ≠ = ≤≥ < > ≮ ≯ ∷ ± + - × ÷ / ∫ ∮ ∝ ∞ ∧ ∨ ∑ ∏ ∪ ∩ ∈ ∵ ∴ ? ‖ ∠ ? ≌ ∽ √ () 【】{} Ⅰ Ⅱ ⊕ ?∥α β γ δ ε δ ε ζ Γ。一、數(shù)學(xué)符號1、數(shù)學(xué)符號的發(fā)明及使用比數(shù)字要晚,但其數(shù)量卻超過了數(shù)字。2、現(xiàn)在常用的數(shù)學(xué)符號已超過了200個,其中,每一個符號都有一段有趣的經(jīng)歷。二、運算符號1、如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的并集(∪),交集(∩),根號(√ ̄),對數(shù)(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
數(shù)學(xué)符號的發(fā)明及使用比數(shù)字要晚,但其數(shù)量卻超過了數(shù)字。現(xiàn)在常用的數(shù)學(xué)符號已超過了200個,其中,每一個符號都有一段有趣的經(jīng)歷。數(shù)學(xué)符號有太多比一一例舉,比如有:1、運算符號如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的并集(∪),交集(∩),根號(√ ̄),對數(shù)(log,lg,ln,lb),比(:),絕對值符號||,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。2、關(guān)系符號如“=”是等號,“≈”是近似符號(即約等于),“≠”是不等號,“>”是大于符號,“<”是小于符號,“≥”是大于或等于符號(也可寫作“≮”,即不小于),“≤”是小于或等于符號(也可寫作“≯”,即不大于),“→”表示變量變化的趨勢,“∽”是相似符號,“≌”是全等號,“∥”是平行符號,“⊥”是垂直符號,“∝”是正比例符號(表示反比例時可以利用倒數(shù)關(guān)系),“∈”是屬于符號,“?”是包含于符號,“?”是包含符號,“|”表示“能整除”(例如a|b表示“a能整除b”,而||b表示r是a恰能整除b的最大冪次),x,y等任何字母都可以代表未知數(shù)。3、結(jié)合符號如小括號“()”,中括號“[]”,大括號“}”,橫線“—”4、性質(zhì)符號如正號“+”,負(fù)號“-”,正負(fù)號等。5、省略符號如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數(shù)),雙曲正弦函數(shù)(sinh),x的函數(shù)(f(x)),極限(lim),角(∠),∵因為,∴所以等等。6、排列組合符號C組合數(shù),A(或P)排列數(shù),n元素的總個數(shù),r參與選擇的元素個數(shù),!階乘等。7、離散數(shù)學(xué)符號如?全稱量詞,?存在量詞,├斷定符(公式在L中可證),╞滿足符(公式在E上有效,公式在E上可滿足),﹁命題的“非”運算,如命題的否定為﹁p,∧命題的“合取”(“與”)運算,∨命題的“析取”(“或”,“可兼或”)運算,→命題的“條件”運算,?命題的“雙條件”運算的等。
1 幾何符號 ⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △ 2 代數(shù)符號 ∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶ 3運算符號 × ÷ √ ± 4集合符號 ∪ ∩ ∈ 5特殊符號 ∑ π(圓周率) 6推理符號 |a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ← ↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨ &; § ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ φ χ ψ ω Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ ∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮ ∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ? ⊙ ⊥ ⊿ ⌒ ℃ 指數(shù)0123:o123 符號 意義 ∞ 無窮大 PI 圓周率 |x| 函數(shù)的絕對值 ∪ 集合并 ∩ 集合交 ≥ 大于等于 ≤ 小于等于 ≡ 恒等于或同余 ln(x) 自然對數(shù) lg(x) 以2為底的對數(shù) log(x) 常用對數(shù) floor(x) 上取整函數(shù) ceil(x) 下取整函數(shù) x mod y 求余數(shù) ∫f(x)δx 不定積分 ∫[a:b]f(x)δx a到b的定積分 [P] P為真等于1否則等于0 ∑[1≤k≤n]f(k) 對n進(jìn)行求和,可以拓廣至很多情況 如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2 lim f(x) (x->?) 求極限 f(z) f關(guān)于z的m階導(dǎo)函數(shù) C(n:m) 組合數(shù),n中取m P(n:m) 排列數(shù) m|n m整除n m⊥n m與n互質(zhì) a ∈ A a屬于集合A #A 集合A中的元素個數(shù) 供參考

7,數(shù)學(xué)知識都有哪些

1過兩點有且只有一條直線 2 兩點之間線段最短 3 同角或等角的補(bǔ)角相等 4 同角或等角的余角相等5 過一點有且只有一條直線和已知直線垂直 6 直線外一點與直線上各點連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內(nèi)錯角相等,兩直線平行 11 同旁內(nèi)角互補(bǔ),兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內(nèi)錯角相等 14 兩直線平行,同旁內(nèi)角互補(bǔ) 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180° 18 推論1 直角三角形的兩個銳角互余 19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和 20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角 21 全等三角形的對應(yīng)邊、對應(yīng)角相等22邊角邊公理 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等 23 角邊角公理 有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24 推論 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等 25 邊邊邊公理 有三邊對應(yīng)相等的兩個三角形全等 26 斜邊、直角邊公理 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上29 角的平分線是到角的兩邊距離相等的所有點的集合30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個角都等于60° 34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) 35 推論1 三個角都相等的三角形是等邊三角形 36 推論 2 有一個角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形 43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線 44定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上 45逆定理 如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a+b=c 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a+b=c,那么這個三角形是直角三角形 48定理 四邊形的內(nèi)角和等于360° 49四邊形的外角和等于360° 50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180° 51推論 任意多邊的外角和等于360° 52平行四邊形性質(zhì)定理1 平行四邊形的對角相等 53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60矩形性質(zhì)定理1 矩形的四個角都是直角 61矩形性質(zhì)定理2 矩形的對角線相等 62矩形判定定理1 有三個角是直角的四邊形是矩形 63矩形判定定理2 對角線相等的平行四邊形是矩形 64菱形性質(zhì)定理1 菱形的四條邊都相等65菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角 66菱形面積=對角線乘積的一半,即S=(a×b)÷2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對角線互相垂直的平行四邊形是菱形69正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等 70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角 71定理1 關(guān)于中心對稱的兩個圖形是全等的 72定理2 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分 73逆定理 如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱 74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等 75等腰梯形的兩條對角線相等 76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 77對角線相等的梯形是等腰梯形 78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等 79 推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰 80 推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第 三邊 81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 的一半 82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 L=(a+b)÷2 S=L×h83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b 86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng)線段成比例 87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例 88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊 89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例 90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似 91 相似三角形判定定理1 兩角對應(yīng)相等,兩三角形相似(ASA) 92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 93 判定定理2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94 判定定理3 三邊對應(yīng)成比例,兩三角形相似(SSS) 95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似 96 性質(zhì)定理1 相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平 分線的比都等于相似比 97 性質(zhì)定理2 相似三角形周長的比等于相似比 98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值 100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101圓是定點的距離等于定長的點的集合 102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合 103圓的外部可以看作是圓心的距離大于半徑的點的集合 104同圓或等圓的半徑相等105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓 106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線 107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線 108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線 109定理 不在同一直線上的三個點確定一條直線 110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧 ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧 112推論2 圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等 115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等 116定理 一條弧所對的圓周角等于它所對的圓心角的一半117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形 120定理 圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角 121①直線L和⊙O相交 d﹤r ②直線L和⊙O相切 d=r ③直線L和⊙O相離 d﹥r 122切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線 123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑 124推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點 125推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角 127圓的外切四邊形的兩組對邊的和相等 128弦切角定理 弦切角等于它所夾的弧對的圓周角 129推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等 130相交弦定理 圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等 131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項 132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項 133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等 134如果兩個圓相切,那么切點一定在連心線上 135①兩圓外離 d﹥R+r ②兩圓外切 d=R+r ③兩圓相交 R-r﹤d﹤R+r(R﹥r) ④兩圓內(nèi)切 d=R-r(R﹥r) ⑤兩圓內(nèi)含d﹤R-r(R﹥r) 136定理 相交兩圓的連心線垂直平分兩圓的公共弦 137定理 把圓分成n(n≥3): ⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形 ⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓139正n邊形的內(nèi)角都等于(n-2)×180°/n 140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長 142正三角形面積√3a/4 a表示邊長 143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 144弧長計算公式:L=n∏R/180 145扇形面積公式:S扇形=n∏R/360=LR/2 146內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)
數(shù)學(xué)分析、初等代數(shù)、高等代數(shù)、解析幾何、初等幾何、高等幾何、概率論與數(shù)理統(tǒng)計、運籌學(xué)、數(shù)學(xué)建模、復(fù)變函數(shù)、常微分方程、實變函數(shù)、泛函分析、拓?fù)鋵W(xué)、近世代數(shù)、計算機(jī)基礎(chǔ)、數(shù)值方法、數(shù)學(xué)史等,以及根據(jù)應(yīng)用方向選擇的基本課程。
初中數(shù)學(xué)知識點總結(jié)一、基本知識一、數(shù)與代數(shù)A、數(shù)與式:1、有理數(shù)有理數(shù):①整數(shù)→正整數(shù)/0/負(fù)整數(shù)②分?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
學(xué)校學(xué)到的那些,還有工作和生活中的那些,有些是用來測量,計算。還有些是用來預(yù)測的,比如金融。在電子方面用到的高等數(shù)學(xué)比較多,而我們?nèi)粘V灰踔袛?shù)學(xué)知識基本滿足。數(shù)學(xué)應(yīng)該說是一切科研的基礎(chǔ)知識,一切現(xiàn)象其實也能抽象成數(shù)學(xué)知識,所以你看到所有的一切都包含了數(shù)學(xué)知識。
數(shù)學(xué)知識包羅萬象,上到天文地理,下至雞毛蒜皮都涉及數(shù)學(xué)知識,不過最基本的不外是幼兒園、小學(xué)所教內(nèi)容:認(rèn)識數(shù)字大小、加減乘除四則運算,最多加上分?jǐn)?shù)、小數(shù)的知識,基本上就是日常都要用到的數(shù)學(xué)知識,熟練掌握運算以及所謂“應(yīng)用題”的解決,再掌握一點關(guān)于面積、體積的計算更好。至于其他“數(shù)學(xué)知識”,即使頂尖數(shù)學(xué)家恐怕難以說清楚“數(shù)學(xué)”最終包括哪些內(nèi)容,因為科學(xué)技術(shù)就是一個不斷探索、不斷發(fā)展的過程。
文章TAG:數(shù)學(xué)大全數(shù)學(xué)大全學(xué)數(shù)學(xué)

最近更新

主站蜘蛛池模板: 濮阳县| 南岸区| 阳泉市| 兴海县| 乳山市| 彰化市| 环江| 和龙市| 咸宁市| 神农架林区| 小金县| 浦县| 彭泽县| 土默特左旗| 乐亭县| 申扎县| 民县| 格尔木市| 玉溪市| 南昌县| 砚山县| 大洼县| 大关县| 塔城市| 苏尼特左旗| 吕梁市| 凤阳县| 巴南区| 松滋市| 剑川县| 巴东县| 临朐县| 南城县| 绥中县| 三都| 库车县| 峨眉山市| 怀化市| 乐都县| 广汉市| 武汉市|