色天下一区二区三区,少妇精品久久久一区二区三区,中文字幕日韩高清,91精品国产91久久久久久最新毛片

首頁 > 上海 > 青浦區 > 上海市初三數壓軸題,上海中考數學壓軸題訓練圖書

上海市初三數壓軸題,上海中考數學壓軸題訓練圖書

來源:整理 時間:2023-06-05 01:14:10 編輯:上海生活 手機版

本文目錄一覽

1,上海中考數學壓軸題訓練圖書

(1)<<黃岡題庫>> (2)《四星級題庫》 都針對壓軸題

上海中考數學壓軸題訓練圖書

2,上海中考數學經常考的壓軸題類型是什么

上海中考數學經常考的壓軸題類型是一一動點問題。 可見21世紀教育網-------2002-2011年海市中考數學選擇填空解答的押軸題匯編
圖形題~還有可能叫你證明的`需要你靈活運用~中考加油~呵呵`
數形結合:圓與函數 三角 動點等
二次函數,動點,相似,三角形知識相結合,難度較大

上海中考數學經常考的壓軸題類型是什么

3,初三數學壓軸題 拋物線yax623與x軸相交于AB兩點與y軸相交于

題面上的AE2=3DE我不知道是不是AE2=3DE 我先按是平方給你做下: DE很明顯長度就是3,這個很簡單自己算下, 那么可以求出AE=3,a的坐標也好求是(-3,0) 進而求出a=1/3,那么DE三等分DN就有2種情況了,第一種:DE=1/3DN 可以求出DN=9,點N的坐標就是(-6,6)下面要做的就是看有沒有點M使MN⊥DM了 用勾股定理就可以了,DN2=MN2+DM2,設點M的坐標為(x,y) 可以求出點M的軌跡方程,然后把拋物線的方程帶入點M的軌跡方程就可以了,求出點M的值看 是不是在第二象限就可以了,其他的情況你自己算一下把,不難的,解題其實就那么幾步, 第一步:看問題是什么 第二步:看題面你能知道什么,題面以外你還知道什么,定理之類的 第三步:把你已知的和問題聯系起來 第四步:就是求解 第五步:驗證就可以了。 希望對你有幫助吧

初三數學壓軸題 拋物線yax623與x軸相交于AB兩點與y軸相交于

4,中考數學壓軸題思維方法

九種題型1線段、角的計算與證明問題中考的解答題一般是分兩到三部分的。第一部分基本上都是一些簡單題或者中檔題,目的在于考察基礎。第二部分往往就是開始拉分的中難題了。對這些題輕松掌握的意義不僅僅在于獲得分數,更重要的是對于整個做題過程中士氣,軍心的影響。線段與角的計算和證明,一般來說難度不會很大,只要找到關鍵“題眼”,后面的路子自己就“通”了。2圖形位置關系中學數學當中,圖形位置關系主要包括點、線、三角形、矩形/正方形以及圓這么幾類圖形之間的關系。在中考中會包含在函數,坐標系以及幾何問題當中,但主要還是通過圓與其他圖形的關系來考察,這其中最重要的就是圓與三角形的各種問題。3 動態幾何從歷年中考來看,動態問題經常作為壓軸題目出現,得分率也是最低的。動態問題一般分兩類,一類是代數綜合方面,在坐標系中有動點,動直線,一般是利用多種函數交叉求解。另一類就是幾何綜合題,在梯形,矩形,三角形中設立動點、線以及整體平移翻轉,對考生的綜合分析能力進行考察。所以說,動態問題是中考數學當中的重中之重,只有完全掌握,才有機會拼高分。4一元二次方程與二次函數在這一類問題當中,尤以涉及的動態幾何問題最為艱難。幾何問題的難點在于想象,構造,往往有時候一條輔助線沒有想到,整個一道題就卡殼了。相比幾何綜合題來說,代數綜合題倒不需要太多巧妙的方法,但是對考生的計算能力以及代數功底有了比較高的要求。中考數學當中,代數問題往往是以一元二次方程與二次函數為主體,多種其他知識點輔助的形式出現的。一元二次方程與二次函數問題當中,純粹的一元二次方程解法通常會以簡單解答題的方式考察。但是在后面的中難檔大題當中,通常會和根的判別式,整數根和拋物線等知識點結合5多種函數交叉綜合問題初中數學所涉及的函數就一次函數,反比例函數以及二次函數。這類題目本身并不會太難,很少作為壓軸題出現,一般都是作為一道中檔次題目來考察考生對于一次函數以及反比例函數的掌握。所以在中考中面對這類問題,一定要做到避免失分。6列方程(組)解應用題在中考中,有一類題目說難不難,說不難又難,有的時候三兩下就有了思路,有的時候苦思冥想很久也沒有想法,這就是列方程或方程組解應用題。方程可以說是初中數學當中最重要的部分,所以也是中考中必考內容。從近年來的中考來看,結合時事熱點考的比較多,所以還需要考生有一些生活經驗。實際考試中,這類題目幾乎要么得全分,要么一分不得,但是也就那么幾種題型,所以考生只需多練多掌握各個題類,總結出一些定式,就可以從容應對了。7動態幾何與函數問題整體說來,代幾綜合題大概有兩個側重,第一個是側重幾何方面,利用幾何圖形的性質結合代數知識來考察。而另一個則是側重代數方面,幾何性質只是一個引入點,更多的考察了考生的計算功夫。但是這兩種側重也沒有很嚴格的分野,很多題型都很類似。其中通過圖中已知幾何圖形構建函數是重點考察對象。做這類題時一定要有“減少復雜性”“增大靈活性”的主體思想。8幾何圖形的歸納、猜想問題中考加大了對考生歸納,總結,猜想這方面能力的考察,但是由于數列的系統知識要到高中才會正式考察,所以大多放在填空壓軸題來出。對于這類歸納總結問題來說,思考的方法是最重要的。9閱讀理解問題如今中考題型越來越活,閱讀理解題出現在數學當中就是最大的一個亮點。閱讀理解往往是先給一個材料,或介紹一個超綱的知識,或給出針對某一種題目的解法,然后再給條件出題。對于這種題來說,如果考生為求快速而完全無視閱讀材料而直接去做題的話,往往浪費大量時間也沒有思路,得不償失。所以如何讀懂題以及如何利用題就成為了關鍵。解題策略1.學會運用數形結合思想。數形結合思想是指從幾何直觀的角度,利用幾何圖形的性質研究數量關系,尋求代數問題的解決方法(以形助數),或利用數量關系來研究幾何圖形的性質,解決幾何問題(以數助形)的一種數學思想. 數形結合 思想使數量關系和幾何圖形巧妙地結合起來,使問題得以解決。縱觀近幾年全國各地的中考壓軸題,絕大部分都是與平面直角坐標系有關,其特點是通過建立點與數即坐標之間的對應關系,一方面可用代數方法研究幾何圖形的性質,另一方面又可借助幾何直觀,得到某些代數問題的解答。2.學會運用函數與方程思想。從分析問題的數量關系入手,適當設定未知數,把所研究的數學問題中已知量和未知量之間的數量關系,轉化為方程或方程組的數學模型,從而使問題得到解決的思維方法,這就是方程思想。用方程思想解題的關鍵是利用已知條件或公式、定理中的已知結論構造方程(組)。這種思想在代數、幾何及生活實際中有著廣泛的應用。直線與拋物線是初中數學中的兩類重要函數,即一次函數與二次函數所表示的圖形。因此,無論是求其解析式還是研究其性質,都離不開函數與方程的思想。例如函數解析式的確定,往往需要根據已知條件列方程或方程組并解之而得。3.學會運用分類討論的思想。分類討論思想可用來檢測學生思維的準確性與嚴密性,常常通過條件的多變性或結論的不確定性來進行考察,有些問題,如果不注意對各種情況分類討論,就有可能造成錯解或漏解,縱觀近幾年的中考壓軸題分類討論思想解題已成為新的熱點。在解答某些數學問題時,有時會遇到多種情況,需要對各種情況加以分類,并逐類求解,然后綜合得解,這就是分類討論法。分類討論是一種邏輯方法,是一種重要的數學思想,同時也是一種重要的解題策略,它體現了化整為零、積零為整的思想與歸類整理的方法。分類的原則:(1)分類中的每一部分是相互獨立的;(2)一次分類按一個標準;(3)分類討論應逐級進行.正確的分類必須是周全的,既不重復、也不遺漏4.學會運用等價轉換思想。轉化思想是解決數學問題的一種最基本的數學思想。在研究數學問題時,我們通常是將未知問題轉化為已知的問題,將復雜的問題轉化為簡單的問題,將抽象的問題轉化為具體的問題,將實際問題轉化為數學問題。轉化的內涵非常豐富,已知與未知、數量與圖形、圖形與圖形之間都可以通過轉化來獲得解決問題的轉機。任何一個數學問題的解決都離不開轉換的思想,初中數學中的轉換大體包括由已知向未知,由復雜向簡單的轉換,而作為中考壓軸題,更注意不同知識之間的聯系與轉換,一道中考壓軸題一般是融代數、幾何、三角于一體的綜合試題,轉換的思路更要得到充分的應用。中考壓軸題所考察的并非孤立的知識點,也并非個別的思想方法,它是對考生綜合能力的一個全面考察,所涉及的知識面廣,所使用的數學思想方法也較全面。因此有的考生對壓軸題有一種恐懼感,認為自己的水平一般,做不了,甚至連看也沒看就放棄了,當然也就得不到應得的分數,為了提高壓軸題的得分率,考試中還需要有一種分題、分段的得分策略。5.要學會搶得分點。一道中考數學壓軸題解不出來,不等于“一點不懂、一點不會”,要將整道題目解題思路轉化為得分點。如中考數學壓軸題一般在大題下都有兩至三個小題,難易程度是第1小題較易,大部學生都能拿到分數;第2小題中等,起到承上啟下的作用;第3題偏難,不過往往建立在1、2兩小題的基礎之上。因此,我們在解答時要把第1小題的分數一定拿到,第2小題的分數要力爭拿到,第3小題的分數要爭取得到,這樣就大大提高了獲得中考數學高分的可能性。中考的評分標準是按照題目所考查的知識點進行評分,解對知識點、抓住得分點就會得分。因此,對于數學中考壓軸題盡可能解答“靠近”得分點,最大限度地發揮自己的水平,把中考數學壓軸題變成高分踏腳石。解中考數學壓軸題,一要樹立必勝的信心;二要具備扎實的基礎知識和熟練的基本技能;三要掌握常用的解題策略。
數學——怎樣解答綜合、壓軸題 解答題在中考中占有相當大的比重,主要由綜合性問題構成,就題型而言,包括計算題、證明題和應用題等.它的題型特點和考查功能決定了審題思考的復雜性和解題設計的多樣性.一般地,解題設計要因題定法,無論是整體考慮還是局部聯想,確定方法都必須遵循的原則是:熟悉化原則、具體化原則;簡單化原則、和諧化原則等. (一)解答綜合、壓軸題,要把握好以下各個環節: 1.審題:這是解題的開始,也是解題的基礎.一定要全面審視題目的所有條件和答題要求,以求正確、全面理解題意,在整體上把握試題的特點、結構,以利于解題方法的選擇和解題步驟的設計. 審題思考中,要把握“三性”,即明確目的性,提高準確性,注意隱含性.解題實踐表明:條件暗示可知并啟發解題手段,結論預告并誘導解題方向,只有細致地審題,才能從題目本身獲得盡可能多的信息.這一步,不要怕慢,其實“慢”中有“快”,解題方向明確,解題手段合理得當,這是“快”的前提和保證.否則,欲速則不達. 2.尋求合理的解題思路和方法:破除模式化、力求創新是近幾年中考數學試題的顯著特點,解答題體現得尤為突出,因此,切忌套用機械的模式尋求解題思路和方法,而應從各個不同的側面、不同的角度,識別題目的條件和結論,認識條件和結論之間的關系、圖形的幾何特征與數、式的數量、結構特征的關系,謹慎地確定解題的思路和方法.當思維受阻時,要及時調整思路和方法,并重新審視題意,注意挖掘隱蔽的條件和內在聯系,既要防止鉆牛角尖,又要防止輕易放棄.(二)題型解析類型1 直線型幾何綜合題這類題常見考查形式為推理與計算.對于推理,基本思路為分析與綜合,即從需要證明的結論出發逆推,尋找使其成立的條件,同時從已知條件出發來推導一些結論,再設法將它們聯系起來.對于計算,基本思路是利用幾何元素(比如邊、角)之間的數量關系結合方程思想來處理.
中考數學壓軸題研討課 ――探索型壓軸題 知識目標 會求平面內點的坐標,會用配方法將二次函數的一般式成頂點式,會求二次函數的最值,能夠正確運用數形結合的思想。 掌握解探索型壓軸題的一般步驟和數學方法。 提高解壓軸題的思維能力及思維方法:抽象概括,聯想轉化,分析綜合。 培養學生的發散思維,鉆研精神和迎新意識。 增強自主學習的能力,在觀察,分析猜想,驗證中培養發散思維,提高分析問題解決問題的能力。 滲透重要的數學思想:方程思想、函數思想、數形結合、數學建模及分類思想等。 激發學生學習數學的自信心、好奇心和求知欲望,使學習的過程成為再發現、再創造的過程,不斷提高自己的思維品質。 重難點:數形結合、數學建模及分類思想。
文章TAG:上海上海市初三三數上海市初三數壓軸題

最近更新

主站蜘蛛池模板: 新津县| 武穴市| 肥西县| 博客| 台东市| 崇州市| 大荔县| 兰坪| 辽宁省| 阜宁县| 双辽市| 乳源| 石屏县| 石渠县| 日照市| 涡阳县| 泰顺县| 拜城县| 郸城县| 东方市| 岢岚县| 永德县| 威海市| 修武县| 庄浪县| 高邮市| 临沭县| 原阳县| 镇坪县| 乐平市| 郸城县| 龙泉市| 安宁市| 彭阳县| 乌鲁木齐市| 惠州市| 龙州县| 焦作市| 岫岩| 日土县| 若尔盖县|