色天下一区二区三区,少妇精品久久久一区二区三区,中文字幕日韩高清,91精品国产91久久久久久最新毛片

首頁 > 內蒙古 > 錫林郭勒盟 > 高中知識清單,高中習題化知識清單

高中知識清單,高中習題化知識清單

來源:整理 時間:2023-03-02 06:31:51 編輯:好學習 手機版

1,高中習題化知識清單

可以,上面既有知識點,又有重點講解還有習題。。唯一不好就是書又大有后我也用這個。 5.3我沒用過
習題化知識清單和53我都用過,都是曲一線的經典啊~應該說,習題化知識清單就是為了夯實基礎的,所以基礎差的很適合用這本書,但是習題化知識清單的內容比較多,講解十份詳細,其實有的知識了解即可,沒必要研究的太細。不過總體說來知識清單特別適合一輪復習的時候用。53的題質量是很好的,題目很經典,建議你挑部分題做,注意方法,不必死摳難題,尤其是一些省市的模擬題,做著很讓人崩潰~~前面說了,知識清單就是很基礎的,高三嘛,基礎是重中之重。高考加油!祝你成功!!

高中習題化知識清單

2,高中各科基本知識點總結

數學的: 1 過兩點有且只有一條直線 2 兩點之間線段最短 3 同角或等角的補角相等 4 同角或等角的余角相等 5 過一點有且只有一條直線和已知直線垂直 6 直線外一點與直線上各點連接的所有線段中,垂線段最短 7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內錯角相等,兩直線平行 11 同旁內角互補,兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內錯角相等 14 兩直線平行,同旁內角互補 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內角和定理 三角形三個內角的和等于180° 18 推論1 直角三角形的兩個銳角互余 19 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和 20 推論3 三角形的一個外角大于任何一個和它不相鄰的內角 21 全等三角形的對應邊、對應角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等 28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點的集合 30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個角都等于60° 34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) 35 推論1 三個角都相等的三角形是等邊三角形 36 推論 2 有一個角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
數學我有DOC的,898032965@qq.com,叫我就發.
你找高考大綱,那里面都是骨干,總結的話,你看看有沒有吧
化學我能找到,我的郵箱:zzh199110@vip.qq.com給我你的地址,我回來給你發

高中各科基本知識點總結

3,高1的數學知識清單

高中高一數學必修1各章知識點總結第一章 集合與函數概念一、集合有關概念1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。2、集合的中元素的三個特性:1.元素的確定性; 2.元素的互異性; 3.元素的無序性說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。(4)集合元素的三個特性使集合本身具有了確定性和整體性。3、集合的表示:1. 用拉丁字母表示集合:A=2.集合的表示方法:列舉法與描述法。注意啊:常用數集及其記法:非負整數集(即自然數集)記作:N正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R關于“屬于”的概念集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 a∈A ,相反,a不屬于集合A 記作 a?A列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。①語言描述法:例:②數學式子描述法:例:不等式x-3>2的解集是4、集合的分類:1.有限集 含有有限個元素的集合2.無限集 含有無限個元素的集合3.空集 不含任何元素的集合 例:二、集合間的基本關系1.“包含”關系—子集注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2.“相等”關系(5≥5,且5≤5,則5=5)實例:設 A=結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B① 任何一個集合是它本身的子集。AíA②真子集:如果AíB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)③如果 AíB, BíC ,那么 AíC④ 如果AíB 同時 BíA 那么A=B3. 不含任何元素的集合叫做空集,記為Φ規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的運算1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A∩B(讀作”A交B”),即A∩B=2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B=3、交集與并集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集與補集(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作: CSA 即 CSA =SCsAA(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U二、函數的有關概念1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合注意:2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;3 函數的定義域、值域要寫成集合或區間的形式.定義域補充能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零; (2)偶次方根的被開方數不小于零; (3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零 (6)實際問題中的函數的定義域還要保證實際問題有意義.(又注意:求出不等式組的解集即為函數的定義域。)構成函數的三要素:定義域、對應關系和值域再注意:(1)構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)(見課本21頁相關例2)值域補充(1)、函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。3. 函數圖象知識歸納(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . 即記為C=圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。(2) 畫法A、描點法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點P(x, y),最后用平滑的曲線將這些點連接起來.B、圖象變換法(請參考必修4三角函數)常用變換方法有三種,即平移變換、伸縮變換和對稱變換(3)作用:1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。發現解題中的錯誤。4.快去了解區間的概念(1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.5.什么叫做映射一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作“f:A B”給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有“方向性”,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對于映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。常用的函數表示法及各自的優點:1 函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;2 解析法:必須注明函數的定義域;3 圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特征;4 列表法:選取的自變量要有代表性,應能反映定義域的特征.注意啊:解析法:便于算出函數值。列表法:便于查出函數值。圖象法:便于量出函數值補充一:分段函數 (參見課本P24-25)在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時必須把自變量代入相應的表達式。分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式并用一個左大括號括起來,并分別注明各部分的自變量的取值情況.(1)分段函數是一個函數,不要把它誤認為是幾個函數;(2)分段函數的定義域是各段定義域的并集,值域是各段值域的并集.補充二:復合函數如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復合函數。例如: y=2sinX y=2cos(X2+1)7.函數單調性(1).增函數設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1<x2時,都有f(x1)<f(x2),那么就說f(x)在區間D上是增函數。區間D稱為y=f(x)的單調增區間(睇清楚課本單調區間的概念)如果對于區間D上的任意兩個自變量的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那么就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.注意:1 函數的單調性是在定義域內的某個區間上的性質,是函數的局部性質;2 必須是對于區間D內的任意兩個自變量x1,x2;當x1<x2時,總有f(x1)<f(x2) 。(2) 圖象的特點如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.(3).函數單調區間與單調性的判定方法(A) 定義法:1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 變形(通常是因式分解和配方);4 定號(即判斷差f(x1)-f(x2)的正負);5 下結論(指出函數f(x)在給定的區間D上的單調性).(B)圖象法(從圖象上看升降)_(C)復合函數的單調性復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律如下:函數 單調性u=g(x) 增 增 減 減y=f(u) 增 減 增 減y=f[g(x)] 增 減 減 增注意:1、函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集. 2、還記得我們在選修里學習簡單易行的導數法判定單調性嗎?8.函數的奇偶性(1)偶函數一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.(2).奇函數一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.注意:1 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。2 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).(3)具有奇偶性的函數的圖象的特征偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.總結:利用定義判斷函數奇偶性的格式步驟:1 首先確定函數的定義域,并判斷其定義域是否關于原點對稱;2 確定f(-x)與f(x)的關系;3 作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.注意啊:函數定義域關于原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)有時判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數的圖象判定 .9、函數的解析表達式(1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.(2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)10.函數最大(小)值(定義見課本p36頁)1 利用二次函數的性質(配方法)求函數的最大(小)值2 利用圖象求函數的最大(小)值3 利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);第二章 基本初等函數一、指數函數(一)指數與指數冪的運算1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *.當 是奇數時,正數的 次方根是一個正數,負數的 次方根是一個負數.此時, 的 次方根用符號 表示.式子 叫做根式(radical),這里 叫做根指數(radical exponent), 叫做被開方數(radicand).當 是偶數時,正數的 次方根有兩個,這兩個數互為相反數.此時,正數 的正的 次方根用符號 表示,負的 次方根用符號- 表示.正的 次方根與負的 次方根可以合并成± ( >0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作 。注意:當 是奇數時, ,當 是偶數時, 2.分數指數冪正數的分數指數冪的意義,規定:, 0的正分數指數冪等于0,0的負分數指數冪沒有意義指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.3.實數指數冪的運算性質(1) · ;(2) ;(3) .(二)指數函數及其性質1、指數函數的概念:一般地,函數 叫做指數函數(exponential ),其中x是自變量,函數的定義域為R.注意:指數函數的底數的取值范圍,底數不能是負數、零和1.2、指數函數的圖象和性質a>1 0<a<1圖象特征 函數性質向x、y軸正負方向無限延伸 函數的定義域為R圖象關于原點和y軸不對稱 非奇非偶函數函數圖象都在x軸上方 函數的值域為R+函數圖象都過定點(0,1)自左向右看,圖象逐漸上升 自左向右看,圖象逐漸下降 增函數 減函數在第一象限內的圖象縱坐標都大于1 在第一象限內的圖象縱坐標都小于1在第二象限內的圖象縱坐標都小于1 在第二象限內的圖象縱坐標都大于1圖象上升趨勢是越來越陡 圖象上升趨勢是越來越緩 函數值開始增長較慢,到了某一值后增長速度極快; 函數值開始減小極快,到了某一值后減小速度較慢;注意:利用函數的單調性,結合圖象還可以看出:(1)在[a,b]上, 值域是 或 ;(2)若 ,則 ; 取遍所有正數當且僅當 ;(3)對于指數函數 ,總有 ;(4)當 時,若 ,則 ;二、對數函數(一)對數1.對數的概念:一般地,如果 ,那么數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)說明:1 注意底數的限制 ,且 ;2 ;3 注意對數的書寫格式.兩個重要對數:1 常用對數:以10為底的對數 ;2 自然對數:以無理數 為底的對數的對數 .對數式與指數式的互化對數式 指數式對數底數 ← → 冪底數對數 ← → 指數真數 ← → 冪(二)對數的運算性質如果 ,且 , , ,那么:1 · + ;2 - ;3 .注意:換底公式 ( ,且 ; ,且 ; ).利用換底公式推導下面的結論(1) ;(2) .(二)對數函數1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變量,函數的定義域是(0,+∞).注意:1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。如: , 都不是對數函數,而只能稱其為對數型函數.2 對數函數對底數的限制: ,且 .2、對數函數的性質:a>1 0<a<1圖象特征 函數性質函數圖象都在y軸右側 函數的定義域為(0,+∞)圖象關于原點和y軸不對稱 非奇非偶函數向y軸正負方向無限延伸 函數的值域為R函數圖象都過定點(1,0)自左向右看,圖象逐漸上升 自左向右看,圖象逐漸下降 增函數 減函數第一象限的圖象縱坐標都大于0 第一象限的圖象縱坐標都大于0第二象限的圖象縱坐標都小于0 第二象限的圖象縱坐標都小于0(三)冪函數1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.2、冪函數性質歸納.(1)所有的冪函數在(0,+∞)都有定義,并且圖象都過點(1,1);(2) 時,冪函數的圖象通過原點,并且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨于 時,圖象在 軸上方無限地逼近 軸正半軸.第三章 函數的應用一、方程的根與函數的零點1、函數零點的概念:對于函數 ,把使 成立的實數 叫做函數 的零點。2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。即:方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.3、函數零點的求法:求函數 的零點:1 (代數法)求方程 的實數根;2 (幾何法)對于不能用求根公式的方程,可以將它與函數 的圖象聯系起來,并利用函數的性質找出零點.4、二次函數的零點:二次函數 .1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.
高中高一數學必修1各章知識點總結第一章 集合與函數概念一、集合有關概念1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。2、集合的中元素的三個特性:1.元素的確定性; 2.元素的互異性; 3.元素的無序性說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。(4)集合元素的三個特性使集合本身具有了確定性和整體性。3、集合的表示:1. 用拉丁字母表示集合:A=2.集合的表示方法:列舉法與描述法。注意啊:常用數集及其記法:非負整數集(即自然數集)記作:N正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R關于“屬于”的概念集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 a∈A ,相反,a不屬于集合A 記作 a?A列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。①語言描述法:例:②數學式子描述法:例:不等式x-3>2的解集是4、集合的分類:1.有限集 含有有限個元素的集合2.無限集 含有無限個元素的集合3.空集 不含任何元素的集合 例:二、集合間的基本關系1.“包含”關系—子集注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2.“相等”關系(5≥5,且5≤5,則5=5)實例:設 A=結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B① 任何一個集合是它本身的子集。AíA②真子集:如果AíB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)③如果 AíB, BíC ,那么 AíC④ 如果AíB 同時 BíA 那么A=B3. 不含任何元素的集合叫做空集,記為Φ規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的運算1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A∩B(讀作”A交B”),即A∩B=2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B=3、交集與并集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集與補集(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作: CSA 即 CSA =SCsAA(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U二、函數的有關概念1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合注意:2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;3 函數的定義域、值域要寫成集合或區間的形式.定義域補充能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零; (2)偶次方根的被開方數不小于零; (3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零 (6)實際問題中的函數的定義域還要保證實際問題有意義.(又注意:求出不等式組的解集即為函數的定義域。)構成函數的三要素:定義域、對應關系和值域再注意:(1)構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)(見課本21頁相關例2)值域補充(1)、函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。3. 函數圖象知識歸納(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . 即記為C=圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。(2) 畫法A、描點法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點P(x, y),最后用平滑的曲線將這些點連接起來.B、圖象變換法(請參考必修4三角函數)常用變換方法有三種,即平移變換、伸縮變換和對稱變換(3)作用:1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。發現解題中的錯誤。4.快去了解區間的概念(1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.5.什么叫做映射一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作“f:A B”給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有“方向性”,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對于映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。常用的函數表示法及各自的優點:1 函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;2 解析法:必須注明函數的定義域;3 圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特征;4 列表法:選取的自變量要有代表性,應能反映定義域的特征.注意啊:解析法:便于算出函數值。列表法:便于查出函數值。圖象法:便于量出函數值補充一:分段函數 (參見課本P24-25)在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時必須把自變量代入相應的表達式。分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式并用一個左大括號括起來,并分別注明各部分的自變量的取值情況.(1)分段函數是一個函數,不要把它誤認為是幾個函數;(2)分段函數的定義域是各段定義域的并集,值域是各段值域的并集.補充二:復合函數如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復合函數。例如: y=2sinX y=2cos(X2+1)7.函數單調性(1).增函數設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1<x2時,都有f(x1)<f(x2),那么就說f(x)在區間D上是增函數。區間D稱為y=f(x)的單調增區間(睇清楚課本單調區間的概念)如果對于區間D上的任意兩個自變量的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那么就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.注意:1 函數的單調性是在定義域內的某個區間上的性質,是函數的局部性質;2 必須是對于區間D內的任意兩個自變量x1,x2;當x1<x2時,總有f(x1)<f(x2) 。(2) 圖象的特點如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.(3).函數單調區間與單調性的判定方法(A) 定義法:1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 變形(通常是因式分解和配方);4 定號(即判斷差f(x1)-f(x2)的正負);5 下結論(指出函數f(x)在給定的區間D上的單調性).(B)圖象法(從圖象上看升降)_(C)復合函數的單調性復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律如下:函數 單調性u=g(x) 增 增 減 減y=f(u) 增 減 增 減y=f[g(x)] 增 減 減 增注意:1、函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集. 2、還記得我們在選修里學習簡單易行的導數法判定單調性嗎?8.函數的奇偶性(1)偶函數一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.(2).奇函數一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.注意:1 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。2 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).(3)具有奇偶性的函數的圖象的特征偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.總結:利用定義判斷函數奇偶性的格式步驟:1 首先確定函數的定義域,并判斷其定義域是否關于原點對稱;2 確定f(-x)與f(x)的關系;3 作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.注意啊:函數定義域關于原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)有時判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數的圖象判定 .9、函數的解析表達式(1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.(2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)10.函數最大(小)值(定義見課本p36頁)1 利用二次函數的性質(配方法)求函數的最大(小)值2 利用圖象求函數的最大(小)值3 利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);第二章 基本初等函數一、指數函數(一)指數與指數冪的運算1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *.當 是奇數時,正數的 次方根是一個正數,負數的 次方根是一個負數.此時, 的 次方根用符號 表示.式子 叫做根式(radical),這里 叫做根指數(radical exponent), 叫做被開方數(radicand).當 是偶數時,正數的 次方根有兩個,這兩個數互為相反數.此時,正數 的正的 次方根用符號 表示,負的 次方根用符號- 表示.正的 次方根與負的 次方根可以合并成± ( >0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作 。注意:當 是奇數時, ,當 是偶數時, 2.分數指數冪正數的分數指數冪的意義,規定:, 0的正分數指數冪等于0,0的負分數指數冪沒有意義指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.3.實數指數冪的運算性質(1) · ;(2) ;(3) .(二)指數函數及其性質1、指數函數的概念:一般地,函數 叫做指數函數(exponential ),其中x是自變量,函數的定義域為R.注意:指數函數的底數的取值范圍,底數不能是負數、零和1.2、指數函數的圖象和性質a>1 0<a<1圖象特征 函數性質向x、y軸正負方向無限延伸 函數的定義域為R圖象關于原點和y軸不對稱 非奇非偶函數函數圖象都在x軸上方 函數的值域為R+函數圖象都過定點(0,1)自左向右看,圖象逐漸上升 自左向右看,圖象逐漸下降 增函數 減函數在第一象限內的圖象縱坐標都大于1 在第一象限內的圖象縱坐標都小于1在第二象限內的圖象縱坐標都小于1 在第二象限內的圖象縱坐標都大于1圖象上升趨勢是越來越陡 圖象上升趨勢是越來越緩 函數值開始增長較慢,到了某一值后增長速度極快; 函數值開始減小極快,到了某一值后減小速度較慢;注意:利用函數的單調性,結合圖象還可以看出:(1)在[a,b]上, 值域是 或 ;(2)若 ,則 ; 取遍所有正數當且僅當 ;(3)對于指數函數 ,總有 ;(4)當 時,若 ,則 ;二、對數函數(一)對數1.對數的概念:一般地,如果 ,那么數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)說明:1 注意底數的限制 ,且 ;2 ;3 注意對數的書寫格式.兩個重要對數:1 常用對數:以10為底的對數 ;2 自然對數:以無理數 為底的對數的對數 .對數式與指數式的互化對數式 指數式對數底數 ← → 冪底數對數 ← → 指數真數 ← → 冪(二)對數的運算性質如果 ,且 , , ,那么:1 · + ;2 - ;3 .注意:換底公式 ( ,且 ; ,且 ; ).利用換底公式推導下面的結論(1) ;(2) .(二)對數函數1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變量,函數的定義域是(0,+∞).注意:1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。如: , 都不是對數函數,而只能稱其為對數型函數.2 對數函數對底數的限制: ,且 .2、對數函數的性質:a>1 0<a<1圖象特征 函數性質函數圖象都在y軸右側 函數的定義域為(0,+∞)圖象關于原點和y軸不對稱 非奇非偶函數向y軸正負方向無限延伸 函數的值域為R函數圖象都過定點(1,0)自左向右看,圖象逐漸上升 自左向右看,圖象逐漸下降 增函數 減函數第一象限的圖象縱坐標都大于0 第一象限的圖象縱坐標都大于0第二象限的圖象縱坐標都小于0 第二象限的圖象縱坐標都小于0(三)冪函數1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.2、冪函數性質歸納.(1)所有的冪函數在(0,+∞)都有定義,并且圖象都過點(1,1);(2) 時,冪函數的圖象通過原點,并且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨于 時,圖象在 軸上方無限地逼近 軸正半軸.第
集合,不等式
看課本吧
集合函數數列三角函數平面向量不等式

高1的數學知識清單

文章TAG:高中知識清單高中高中知識知識

最近更新

主站蜘蛛池模板: 云梦县| 邢台市| 铜川市| 子长县| 东港市| 永清县| 东安县| 韩城市| 阿尔山市| 乐清市| 淄博市| 泾源县| 岱山县| 永新县| 肃南| 镇赉县| 阿图什市| 视频| 陇南市| 剑川县| 甘德县| 广东省| 荔浦县| 吉林省| 定结县| 包头市| 莱阳市| 苍山县| 朝阳市| 三穗县| 错那县| 徐州市| 旬阳县| 星子县| 高尔夫| 乳山市| 舒城县| 大厂| 柳州市| 朔州市| 永州市|