色天下一区二区三区,少妇精品久久久一区二区三区,中文字幕日韩高清,91精品国产91久久久久久最新毛片

首頁 > 北京 > 海淀區 > 數學必修一,高一數學必修一數學題

數學必修一,高一數學必修一數學題

來源:整理 時間:2023-03-12 11:08:08 編輯:好學習 手機版

1,高一數學必修一數學題

x^2+x^-2=2√2 二邊平方得x^4+x^-4=6 x^2 - x^ -2二邊平方得(x^4+x^-4) -2=6-2=4

高一數學必修一數學題

2,高中數學必修一知識點總結整理

《高中數學必修1》是2007年人民教育出版社出版的圖書,作者是人民教育出版社課題材料研究所、中學數學課程教材研究開發中心。該書是高中數學學習階段順序必修的第一本教學輔助資料。 高中數學必修1目錄 第一章集合與函數概念 1.1集合 閱讀與思考 集合中元素的個數 1.2函數及其表示 閱讀與思考 函數概念的發展歷程 1.3函數的基本性質 信息技術應用 用計算機繪制函數圖象 實習作業 小結 復習參考題 第二章基本初等函數(Ⅰ) 2.1指數函數 信息技術應用 借助信息技術探究指數函數的性質 2.2對數函數 閱讀與思考 對數的發明 探究與發現 互為反函數的兩個函數圖象之間的關系 2.3冪函數 小結 復習參考題 第三章函數的應用 3.1函數與方程 閱讀與思考 中外歷史上的方程求解 信息技術應用 借助信息技術求方程的近似解 3.2函數模型及其應用 信息技術應用 收集數據并建立函數模型 實習作業 小結 復習參考題 高中數學必修1知識歸納

高中數學必修一知識點總結整理

3,高一數學必修一

因為f(x)<1/f(x) 所以f(x)<-1 f(x)*f(x)>1 f(x^2)>1
就是f(x),那個一是代表x
F(| X)什么意思
f(1 x) 是什么意思?

高一數學必修一

4,數學必修一公式有哪些

數學必修一數學公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。5、-ctgA+ctgBsin(A+B)/sinAsinB。數學必修一公式歸納:一、指數與指數冪的運算  1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.  當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).  當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。  注意:當是奇數時,當是偶數時。2、分數指數冪。  正數的分數指數冪的意義,規定:0的正分數指數冪等于0,0的負分數指數冪沒有意義  指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.  3、實數指數冪的運算性質。

5,高一數學必修一

是這樣f(x2) 把x2看成x所以f(x2)=2×(x2)-1=2x2-1g(x)=1/(x2+1)在f[g(x)]中 把g(x)=1/(x2+1)看成f(x)=2x-1 中的x則有f[g(x)]=2×[1/(x2+1)]-1=2/(x2+1)-1f(x)+2=(2x-1)+2=2x+1在g[f(x)+2]中 把f(x)+2=2x+1 看成g(x)=1/(x2+1)中的x則有g[f(x)+2]=1/[(2x+1)2+1]=1/(4x2+4x+2)

6,高一數學必修一知識點梳理

是孩子適應學校,適應老師,適應各種學習環境的時候,簡單說就是磨合期。高中知識點那么多,學科壓力很大,很多人剛進入高一,還存在著新鮮勁和學習的動力,雖然有些吃力,但是依舊在力挺。下面是我給大家帶來的 高一數學 必修一知識點梳理,希望能幫助到你! 高一數學必修一知識點梳理1 一、指數函數 (一)指數與指數冪的運算 1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_. 當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand). 當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。 注意:當是奇數時,當是偶數時, 2.分數指數冪 正數的分數指數冪的意義,規定: 0的正分數指數冪等于0,0的負分數指數冪沒有意義 指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪. 3.實數指數冪的運算性質 (二)指數函數及其性質 1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R. 注意:指數函數的底數的取值范圍,底數不能是負數、零和1. 2、指數函數的圖象和性質 【第三章:第三章函數的應用】 1、函數零點的概念:對于函數,把使成立的實數叫做函數的零點。 2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即: 方程有實數根函數的圖象與軸有交點函數有零點. 3、函數零點的求法: 求函數的零點: 1(代數法)求方程的實數根; 2(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯系起來,并利用函數的性質找出零點. 4、二次函數的零點: 二次函數. 1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點. 2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點. 3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點. 高一數學必修一知識點梳理2 1、函數零點的定義 (1)對于函數)(xfy,我們把方程0)(xf的實數根叫做函數)(xfy的零點。 (2)方程0)(xf有實根?函數()yfx的圖像與x軸有交點?函數()yfx有零點。因此判斷一個函數是否有零點,有幾個零點,就是判斷方程0)(xf是否有實數根,有幾個實數根。函數零點的求法:解方程0)(xf,所得實數根就是()fx的零點(3)變號零點與不變號零點 ①若函數()fx在零點0x左右兩側的函數值異號,則稱該零點為函數()fx的變號零點。②若函數()fx在零點0x左右兩側的函數值同號,則稱該零點為函數()fx的不變號零點。 ③若函數()fx在區間,ab上的圖像是一條連續的曲線,則0)()( 2、函數零點的判定 (1)零點存在性定理:如果函數)(xfy在區間],[ba上的圖象是連續不斷的曲線,并且有()()0fafb,那么,函數)(xfy在區間,ab內有零點,即存在),(0bax,使得0)(0xf,這個0x也就是方程0)(xf的根。 (2)函數)(xfy零點個數(或方程0)(xf實數根的個數)確定 方法 ①代數法:函數)(xfy的零點?0)(xf的根;②(幾何法)對于不能用求根公式的方程,可以將它與函數)(xfy的圖象聯系起來,并利用函數的性質找出零點。 (3)零點個數確定 0)(xfy有2個零點?0)(xf有兩個不等實根;0)(xfy有1個零點?0)(xf有兩個相等實根;0)(xfy無零點?0)(xf無實根;對于二次函數在區間,ab上的零點個數,要結合圖像進行確定. 3、二分法 (1)二分法的定義:對于在區間[,]ab上連續不斷且()()0fafb的函數()yfx,通過不斷地把函數()yfx的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,進而得到零點的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步驟: ①確定區間[,]ab,驗證()()0fafb,給定精確度e; ②求區間(,)ab的中點c;③計算()fc; (ⅰ)若()0fc,則c就是函數的零點; (ⅱ)若()()0fafc,則令bc(此時零點0(,)xac);(ⅲ)若()()0fcfb,則令ac(此時零點0(,)xcb); ④判斷是否達到精確度e,即ab,則得到零點近似值為a(或b);否則重復②至④步. 高一數學必修一知識點梳理3 (1)直線的傾斜角 定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180° (2)直線的斜率 ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度. 當時,;當時,;當時,不存在. ②過兩點的直線的斜率公式: 注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°; (2)k與P1、P2的順序無關;(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得; (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到. (3)直線方程 ①點斜式:直線斜率k,且過點 注意:當直線的斜率為0°時,k=0,直線的方程是y=y1. 當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1. ②斜截式:,直線斜率為k,直線在y軸上的截距為b ③兩點式:()直線兩點, ④截矩式: 其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為. ⑤一般式:(A,B不全為0) 注意:各式的適用范圍特殊的方程如: 平行于x軸的直線:(b為常數);平行于y軸的直線:(a為常數); (5)直線系方程:即具有某一共同性質的直線 (一)平行直線系 平行于已知直線(是不全為0的常數)的直線系:(C為常數) (二)垂直直線系 垂直于已知直線(是不全為0的常數)的直線系:(C為常數) (三)過定點的直線系 (ⅰ)斜率為k的直線系:,直線過定點; (ⅱ)過兩條直線,的交點的直線系方程為 (為參數),其中直線不在直線系中. (6)兩直線平行與垂直 注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否. (7)兩條直線的交點 相交 交點坐標即方程組的一組解. 方程組無解;方程組有無數解與重合 (8)兩點間距離公式:設是平面直角坐標系中的兩個點 (9)點到直線距離公式:一點到直線的距離 (10)兩平行直線距離公式 在任一直線上任取一點,再轉化為點到直線的距離進行求解. 高一數學必修一知識點梳理相關 文章 : ★ 高一數學必修一知識點匯總 ★ 高一數學必修1知識點歸納 ★ 高中數學必修1知識點總結 ★ 高一數學必修一公式歸納 ★ 高一數學必修一知識點總結 ★ 高中數學高一數學必修一知識點 ★ 高中必修一數學知識點歸納 ★ 高一人教版數學必修一第一章知識點整理 ★ 高一數學知識點匯總大全 ★ 高一數學知識點總結

7,高一數學必修一知識點總結

高一數學必修1第一章知識點總結一、集合有關概念1. 集合的含義2. 集合的中元素的三個特性:(1) 元素的確定性,(2) 元素的互異性,(3) 元素的無序性, 3.集合的表示:(1) 用拉丁字母表示集合:A=(2) 集合的表示方法:列舉法與描述法。? 注意:常用數集及其記法:非負整數集(即自然數集) 記作:N正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R1) 列舉法:2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。3) 語言描述法:例:4) Venn圖:4、集合的分類:(1) 有限集 含有有限個元素的集合(2) 無限集 含有無限個元素的集合(3) 空集 不含任何元素的集合 例:二、集合間的基本關系1.“包含”關系—子集注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2.“相等”關系:A=B (5≥5,且5≤5,則5=5)實例:設 A=即:① 任何一個集合是它本身的子集。A?A②真子集:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)③如果 A?B, B?C ,那么 A?C④ 如果A?B 同時 B?A 那么A=B3. 不含任何元素的集合叫做空集,記為Φ規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。? 有n個元素的集合,含有2n個子集,2n-1個真子集三、集合的運算運算類型 交 集 并 集 補 集定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作A交B),即A B={x|x A,且x B}.由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:A B(讀作A并B),即A B =設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作 ,即CSA= 韋恩圖示 性 質 A A=A A Φ=ΦA B=B AA B A A B BA A=AA Φ=AA B=B AA B AA B B(CuA) (CuB)= Cu (A B)(CuA) (CuB)= Cu(A B)A (CuA)=UA (CuA)= Φ.例題:1.下列四組對象,能構成集合的是 ( )A某班所有高個子的學生 B著名的藝術家 C一切很大的書 D 倒數等于它自身的實數2.集合3.若集合M=4.設集合A= ,B= ,若A B,則 的取值范圍是 5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人,兩種實驗都做錯得有4人,則這兩種實驗都做對的有 人。6. 用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M= .7.已知集合A=二、函數的有關概念1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合注意:1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零; (2)偶次方根的被開方數不小于零; (3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零, (7)實際問題中的函數的定義域還要保證實際問題有意義.? 相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);②定義域一致 (兩點必須同時具備)(見課本21頁相關例2)2.值域 : 先考慮其定義域(1)觀察法 (2)配方法(3)代換法3. 函數圖象知識歸納(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . (2) 畫法A、 描點法:B、 圖象變換法常用變換方法有三種1) 平移變換2) 伸縮變換3) 對稱變換4.區間的概念(1)區間的分類:開區間、閉區間、半開半閉區間(2)無窮區間(3)區間的數軸表示.5.映射一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作f:A→B6.分段函數 (1)在定義域的不同部分上有不同的解析表達式的函數。(2)各部分的自變量的取值情況.(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.補充:復合函數如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。 二.函數的性質1.函數的單調性(局部性質)(1)增函數設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1如果對于區間D上的任意兩個自變量的值x1,x2,當x1注意:函數的單調性是函數的局部性質; (2) 圖象的特點 如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的. (3).函數單調區間與單調性的判定方法 (A) 定義法: ○1 任取x1,x2∈D,且x1 ○2 作差f(x1)-f(x2); ○3 變形(通常是因式分解和配方); ○4 定號(即判斷差f(x1)-f(x2)的正負); ○5 下結論(指出函數f(x)在給定的區間D上的單調性). (B)圖象法(從圖象上看升降) (C)復合函數的單調性 復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減” 注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集. 8.函數的奇偶性(整體性質) (1)偶函數 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數. (2).奇函數 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數. (3)具有奇偶性的函數的圖象的特征 偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱. 利用定義判斷函數奇偶性的步驟: ○1首先確定函數的定義域,并判斷其是否關于原點對稱; ○2確定f(-x)與f(x)的關系; ○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數. (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數的圖象判定 . 9、函數的解析表達式 (1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域. (2)求函數的解析式的主要方法有: 1) 湊配法 2) 待定系數法 3) 換元法 4) 消參法 10.函數最大(小)值(定義見課本p36頁) ○1 利用二次函數的性質(配方法)求函數的最大(小)值 ○2 利用圖象求函數的最大(小)值 ○3 利用函數單調性的判斷函數的最大(小)值: 如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b); 如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b); 例題: 1.求下列函數的定義域: ⑴ ⑵ 2.設函數 的定義域為 ,則函數 的定義域為_ _ 3.若函數 的定義域為 ,則函數 的定義域是 4.函數 ,若 ,則 = 6.已知函數 ,求函數 , 的解析式 7.已知函數 滿足 ,則 = 。 8.設 是R上的奇函數,且當 時, ,則當 時 = 在R上的解析式為 9.求下列函數的單調區間: ⑴ (2) 10.判斷函數 的單調性并證明你的結論. 11.設函數 判斷它的奇偶性并且求證: .
我沒有細說,都是大概。想來樓主關于書上的基礎都能在筆記或書上找到,不明白的在問我我在細說!呵呵!1、集合與函數(集合的概念、集合元素的三個特征、集合的分類、子集的概念、子集的性質、有限集合的子集個數、關于集合的運算:注意交集或并集中“或”“且”的意思,“或”兩者皆可的意思“且”是兩者都有的意思、交集與并集的有關性質、全集與補集的性質、函數的定義、三要素、函數的定義域、函數的值域、函數的單調性、單調區間、奇偶性以及奇偶性的特點) 2、3章說名稱你也不能太明白,知識點太零碎了,我想想怎么弄 在跟你說!呵呵!
沒有
http://read.baidu.com/view/1dc8306b011ca300a6c390f8.html
第一章 集合與函數概念一、集合有關概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。 2、集合的中元素的三個特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性 說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。 (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。 (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。 (4)集合元素的三個特性使集合本身具有了確定性和整體性。 3、集合的表示:非負整數集(即自然數集) 記作:n 正整數集 n*或 n+ 整數集z 有理數集q 實數集r 關于“屬于”的概念 集合的元素通常用小寫的拉丁字母表示,如:a是集合a的元素,就說a屬于集合a 記作 a∈a ,相反,a不屬于集合a 記作 a a 列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。 ①語言描述法:例:②數學式子描述法:例:不等式x-3>2的解集是1.有限集 含有有限個元素的集合 2.無限集 含有無限個元素的集合 3.空集 不含任何元素的集合 例:注意:ba?有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。 反之: 集合a不包含于集合b,或集合b不包含集合a,記作a??b或b??a 2.“相等”關系(5≥5,且5≤5,則5=5)實例:設 a=結論:對于兩個集合a與b,如果集合a的任何一個元素都是集合b的元素,同時,集合b的任何一個元素都是集合a的元素,我們就說集合a等于集合b,即:a=b ① 任何一個集合是它本身的子集。a a ②真子集:如果a b,且a b那就說集合a是集合b的真子集,記作ab(或ba) ③如果 a b, b c ,那么 a c ④ 如果a b 同時 b a 那么a=b 3. 不含任何元素的集合叫做空集,記為φ 規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的運算 1.交集的定義:一般地,由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集. 記作a∩b(讀作"a交b"),即a∩b=2、并集的定義:一般地,由所有屬于集合a或屬于集合b的元素所組成的集合,叫做a,b的并集。記作:a∪b(讀作"a并b"),即a∪b=4、全集與補集 (1)補集:設s是一個集合,a是s的一個子集(即sa?),由s中所有不屬于a的元素組成的集合,叫做s中子集a的補集(或余集) 記作: csa 即 csa =(2)全集:如果集合s含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用u來表示。 (3)性質:⑴cu(c ua)=a ⑵(c ua)∩a=φ ⑶(cua)∪a=u 二、函數的有關概念 1.函數的概念:設a、b是非空的數集,如果按照某個確定的對應關系f,使對于集合a中的任意一個數x,在集合b中都有唯一確定的數f(x)和它對應,那么就稱f:a→b為從集合a到集合b的一個函數.記作: y=f(x),x∈a.其中,x叫做自變量,x的取值范圍a叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零; (2)偶次方根的被開方數不小于零; (3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零 (7)實際問題中的函數的定義域還要保證實際問題有意義. (注意:求出不等式組的解集即為函數的定義域。) 構成函數的三要素:定義域、對應關系和值域 再注意:(1)構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)值域補充 (1)、函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。 3. 函數圖象知識歸納 (1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈a)中的x為橫坐標,函數值y為縱坐標的點p(x,y)的集合c,叫做函數 y=f(x),(x ∈a)的圖象. c上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在c上 . 即記為c=圖象c一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與y軸的直線最多只有一個交點的若干條曲線或離散點組成。 (2) 畫法 a、描點法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點p(x, y),最后用平滑的曲線將這些點連接起來. b、圖象變換法(請參考必修4三角函數) 常用變換方法有三種,即平移變換、伸縮變換和對稱變換 (3)作用: 1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。 3.解區間的概念 (1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示. 4.映射 一般地,設a、b是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合a中的任意一個元素x,在集合b中都有唯一確定的元素y與之對應,那么就稱對應f:a?b為從集合a到集合b的一個映射。記作“f:a?b” 給定一個集合a到b的映射,如果a∈a,b∈b.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象 說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合a、b及對應法則f是確定的;②對應法則有“方向性”,即強調從集合a到集合b的對應,它與從b到a的對應關系一般是不同的;③對于映射f:a→b來說,則應滿足:(ⅰ)集合a中的每一個元素,在集合b中都有象,并且象是唯一的;(ⅱ)集合a中不同的元素,在集合b中對應的象。
文章TAG:數學必修一數學必修高一

最近更新

  • 專業化妝,一套專業化妝品需要有哪些

    一套專業化妝品需要有哪些化妝水,乳液,隔離,粉底,蜜粉,眉筆,眼影,眼線,睫毛膏,腮紅,遮暇筆,唇膏,唇蜜化妝水、隔離霜、防曬霜、粉底液、粉餅、散粉、珠光粉、腮紅、眼線液、眉筆、睫 ......

    海淀區 日期:2023-05-06

  • 晨字取名,起名晨帶什么字好聽

    起名晨帶什么字好聽晨曦2,晨字取名帶晨字的男孩名字周涵暢:滋潤化育,使之發揚。適用于男孩取名字。出自《程氏外書》卷三:“興于詩者,吟詠性情涵暢道德之中而歆動之,有吾與點之氣象。”晨 ......

    海淀區 日期:2023-05-06

  • 茴香怎么做好吃,茴香菜怎么吃

    茴香菜怎么吃用料茴香菜1把雞蛋3個油適量鹽適量茴香菜蛋花湯的做法新鮮茴香菜把菜根撥掉,泡水洗凈備用。瀝干水切成小段。準備好雞蛋,放多放少適菜量而定,雞蛋太多也不好吃。鍋里水開了先放 ......

    海淀區 日期:2023-05-06

  • 設計手冊,給水排水設計手冊 哪一冊可以查到局部阻力系數

    給水排水設計手冊哪一冊可以查到局部阻力系數給水排水設計手冊第1冊常用資料第十五章,第一小節2,vi設計手冊包含哪些內容在vi設計手冊中有其他標識圖形系統,這主要是吉祥物形象或裝飾紋 ......

    海淀區 日期:2023-05-06

  • 蘇軾的生平事跡,關于蘇軾的生平事跡和名句

    關于蘇軾的生平事跡和名句2,求蘇軾生平事跡1,關于蘇軾的生平事跡和名句但愿人長久,千里共蟬娟.2,求蘇軾生平事跡蘇軾(1037~1101年),字子瞻,又字和仲,號“東坡居士”,眉州 ......

    海淀區 日期:2023-05-06

  • 九六年屬什么,1996年的屬什么

    1996年的屬什么屬鼠屬鼠希望能采納。鼠屬鼠鼠{0}2,96年屬啥的農歷出生年份:1996年。屬相為:鼠;十二地支為:子;合稱子鼠。生肖鼠的五行屬:水。12生肖的順序為第1位。屬鼠 ......

    海淀區 日期:2023-05-05

  • 日本侵略中國,日本是什么時候侵略中國的

    日本是什么時候侵略中國的1937年七月七日.{0}2,日本侵略中國的罪惡事件最明顯的是731殺人工廠在東北三省建立,侵華日軍從事生物戰細菌戰研究和人體試驗相關研究的秘密軍事醫療部隊 ......

    海淀區 日期:2023-05-05

  • 椰子的種子在哪里,椰子是裸子植物還是被子植物

    椰子是裸子植物還是被子植物被子植物,在椰子的纖維外皮里2,椰子樹種子怎么買啊其實,可以到本地的花鳥市場,哪里有專門賣植物和植物種子的。吃過椰子的人都知道,椰子的果皮分為三層,外層薄 ......

    海淀區 日期:2023-05-05

主站蜘蛛池模板: 万载县| 延津县| 长宁县| 德兴市| 垣曲县| 固始县| 许昌市| 西充县| 武宣县| 东兴市| 民乐县| 丰台区| 永寿县| 武定县| 贵州省| 庆云县| 祁门县| 新源县| 潢川县| 海伦市| 开远市| 梅河口市| 丰宁| 南昌县| 雅安市| 定襄县| 漯河市| 上蔡县| 北流市| 西峡县| 永新县| 鞍山市| 洛阳市| 汝州市| 云和县| 金湖县| 赞皇县| 桃园县| 绥阳县| 石城县| 绥德县|