色天下一区二区三区,少妇精品久久久一区二区三区,中文字幕日韩高清,91精品国产91久久久久久最新毛片

首頁 > 湖南 > 湘潭市 > 八上數學知識點,八年級數學上冊重點

八上數學知識點,八年級數學上冊重點

來源:整理 時間:2023-06-09 14:43:42 編輯:好學習 手機版

1,八年級數學上冊重點

L1的解析式為:Y=-X 20與X、Y軸分別交與M(0,20)N(20,0)故直線L與X軸交與點A(8,0), 設與y軸交與點P(0,y)因為三角形PAO的面積為16,故1/2*y*8=16所以y=4,即P(0,4)所以直線L的解析式為Y=-1/2X 4 不知道你是否明白

八年級數學上冊重點

2,初二上冊數學知識點

初二數學上冊知識點總結1 過兩點有且只有一條直線 2 兩點之間線段最短 3 同角或等角的補角相等 4 同角或等角的余角相等 5 過一點有且只有一條直線和已知直線垂直 6 直線外一點與直線上各點連接的所有線段中,垂線段最短 7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內錯角相等,兩直線平行 11 同旁內角互補,兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內錯角相等 14 兩直線平行,同旁內角互補 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內角和定理 三角形三個內角的和等于180° 18 推論1 直角三角形的兩個銳角互余 19 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和 20 推論3 三角形的一個外角大于任何一個和它不相鄰的內角 21 全等三角形的對應邊、對應角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等 28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點的集合 30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個角都等于60° 34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) 35 推論1 三個角都相等的三角形是等邊三角形 36 推論 2 有一個角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 42 定理1 關于某條直線對稱的兩個圖形是全等形 43 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線 44定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上 45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那么這個三角形是直角三角形 48定理 四邊形的內角和等于360° 49四邊形的外角和等于360° 50多邊形內角和定理 n邊形的內角的和等于(n-2)×180° 51推論 任意多邊的外角和等于360° 52平行四邊形性質定理1 平行四邊形的對角相等 53平行四邊形性質定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質定理3 平行四邊形的對角線互相平分 56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60矩形性質定理1 矩形的四個角都是直角
要多練習,知道自己的不足,對大家的學習有所幫助,以下是精品學習網為大家總結的初二數學上冊知識點,希望大家喜歡! 1 全等三角形的對應邊、對應角相等 2邊角邊公理(sas) 有兩邊和它們的夾角對應相等的兩個三角形全等 3 角邊角公理( asa)有兩角和它們的夾邊對應相等的兩個三角形全等 4 推論(aas) 有兩角和其中一角的對邊對應相等的兩個三角形全等 5 邊邊邊公理(sss) 有三邊對應相等的兩個三角形全等 6 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 7 定理1 在角的平分線上的點到這個角的兩邊的距離相等 8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 9 角的平分線是到角的兩邊距離相等的所有點的集合 10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) 21 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 23 推論3 等邊三角形的各角都相等,并且每一個角都等于60°
3 同角或等角的補角相等 4 同角或等角的余角相等 5 過一點有且只有一條直線和已知直線垂直 6 直線外一點與直線上各點連接的所有線段中,垂線段最短 7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內錯角相等,兩直線平行 11 同旁內角互補,兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內錯角相等 14 兩直線平行,同旁內角互補 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內角和定理 三角形三個內角的和等于180° 18 推論1 直角三角形的兩個銳角互余 19 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和 20 推論3 三角形的一個外角大于任何一個和它不相鄰的內角 21 全等三角形的對應邊、對應角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等 28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點的集合

初二上冊數學知識點

3,初二上冊數學的所有知識點歸納

1 過兩點有且只有一條直線 2 兩點之間線段最短 3 同角或等角的補角相等 4 同角或等角的余角相等 5 過一點有且只有一條直線和已知直線垂直 6 直線外一點與直線上各點連接的所有線段中,垂線段最短 7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內錯角相等,兩直線平行 11 同旁內角互補,兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內錯角相等 14 兩直線平行,同旁內角互補 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內角和定理 三角形三個內角的和等于180° 18 推論1 直角三角形的兩個銳角互余 19 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和 20 推論3 三角形的一個外角大于任何一個和它不相鄰的內角 21 全等三角形的對應邊、對應角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等 28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點的集合 30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個角都等于60° 34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) 35 推論1 三個角都相等的三角形是等邊三角形 36 推論 2 有一個角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 42 定理1 關于某條直線對稱的兩個圖形是全等形 43 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線 44定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上 45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那么這個三角形是直角三角形 48定理 四邊形的內角和等于360° 49四邊形的外角和等于360° 50多邊形內角和定理 n邊形的內角的和等于(n-2)×180° 51推論 任意多邊的外角和等于360° 52平行四邊形性質定理1 平行四邊形的對角相等 53平行四邊形性質定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質定理3 平行四邊形的對角線互相平分 56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60矩形性質定理1 矩形的四個角都是直角
(一)運用公式法: 我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。 (二)平方差公式 1.平方差公式 (1)式子: a2-b2=(a+b)(a-b) (2)語言:兩個數的平方差,等于這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。 (三)因式分解 1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。 2.因式分解,必須進行到每一個多項式因式不能再分解為止。 (四)完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到: a2+2ab+b2 =(a+b)2 a2-2ab+b2 =(a-b)2 這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等于這兩個數的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。 上面兩個公式叫完全平方公式。 (2)完全平方式的形式和特點 ①項數:三項 ②有兩項是兩個數的的平方和,這兩項的符號相同。 ③有一項是這兩個數的積的兩倍。 (3)當多項式中有公因式時,應該先提出公因式,再用公式分解。 (4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。 (5)分解因式,必須分解到每一個多項式因式都不能再分解為止。 (五)分組分解法 我們看多項式am+ an+ bm+ bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式. 如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式. 原式=(am +an)+(bm+ bn) =a(m+ n)+b(m +n) 做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續(xù)分解,所以 原式=(am +an)+(bm+ bn) =a(m+ n)+b(m+ n) =(m +n)?(a +b). 這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組并提取公因式后它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式. (六)提公因式法 1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式. 2. 運用公式x2 +(p+q)x+pq=(x+q)(x+p)進行因式分解要注意: 1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等于 一次項的系數. 2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟: ① 列出常數項分解成兩個因數的積各種可能情況; ②嘗試其中的哪兩個因數的和恰好等于一次項系數. 3.將原多項式分解成(x+q)(x+p)的形式. (七)分式的乘除法 1.把一個分式的分子與分母的公因式約去,叫做分式的約分. 2.分式進行約分的目的是要把這個分式化為最簡分式. 3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分. 4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2, (x-y)3=-(y-x)3. 5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方. 6.注意混合運算中應先算括號,再算乘方,然后乘除,最后算加減. (八)分數的加減法 1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來. 2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變. 3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備. 4.通分的依據:分式的基本性質. 5.通分的關鍵:確定幾個分式的公分母. 通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母. 6.類比分數的通分得到分式的通分: 把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分. 7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。 同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。 8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质剑缓笤偌訙p. 9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號. 10.對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分. 11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運算簡化. 12.作為最后結果,如果是分式則應該是最簡分式. (九)含有字母系數的一元一次方程 1.含有字母系數的一元一次方程 引例:一數的a倍(a≠0)等于b,求這個數。用x表示這個數,根據題意,可得方程 ax=b(a≠0) 在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。 含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等于零。

初二上冊數學的所有知識點歸納

4,初二上學期數學知識點

八年級上冊數學復習提綱1 全等三角形的對應邊、對應角相等 ?2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 ?3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 ?4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 ?5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 ?6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 ?7 定理1 在角的平分線上的點到這個角的兩邊的距離相等 ?8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 ?9 角的平分線是到角的兩邊距離相等的所有點的集合 ?10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) ?21 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 ?22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 ?23 推論3 等邊三角形的各角都相等,并且每一個角都等于60° & #172;24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) ?25 推論1 三個角都相等的三角形是等邊三角形 ?26 推論 2 有一個角等于60°的等腰三角形是等邊三角形 ?27 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 ?28 直角三角形斜邊上的中線等于斜邊上的一半 ?29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ?30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 ?31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 ?
初中數學知識點歸納 有理數的加法運算 同號兩數來相加,絕對值加不變號。 異號相加大減小,大數決定和符號。 互為相反數求和,結果是零須記好。 【注】“大”減“小”是指絕對值的大小。 有理數的減法運算 減正等于加負,減負等于加正。 有理數的乘法運算符號法則 同號得正異號負,一項為零積是零。 合并同類項 說起合并同類項,法則千萬不能忘。 只求系數代數和,字母指數留原樣。 去、添括號法則 去括號或添括號,關鍵要看連接號。 擴號前面是正號,去添括號不變號。 括號前面是負號,去添括號都變號。 解方程 已知未知鬧分離,分離要靠移完成。 移加變減減變加,移乘變除除變乘。 平方差公式 兩數和乘兩數差,等于兩數平方差。 積化和差變兩項,完全平方不是它。 完全平方公式 二數和或差平方,展開式它共三項。 首平方與末平方,首末二倍中間放。 和的平方加聯結,先減后加差平方。 完全平方公式 首平方又末平方,二倍首末在中央。 和的平方加再加,先減后加差平方。 解一元一次方程 先去分母再括號,移項變號要記牢。 同類各項去合并,系數化“1”還沒好。 求得未知須檢驗,回代值等才算了。 解一元一次方程 先去分母再括號,移項合并同類項。 系數化1還沒好,準確無誤不白忙。 因式分解與乘法 和差化積是乘法,乘法本身是運算。 積化和差是分解,因式分解非運算。 因式分解 兩式平方符號異,因式分解你別怕。 兩底和乘兩底差,分解結果就是它。 兩式平方符號同,底積2倍坐中央。 因式分解能與否,符號上面有文章。 同和異差先平方,還要加上正負號。 同正則正負就負,異則需添冪符號。 因式分解 一提二套三分組,十字相乘也上數。 四種方法都不行,拆項添項去重組。 重組無望試求根,換元或者算余數。 多種方法靈活選,連乘結果是基礎。 同式相乘若出現,乘方表示要記住。 【注】 一提(提公因式)二套(套公式) 因式分解 一提二套三分組,叉乘求根也上數。 五種方法都不行,拆項添項去重組。 對癥下藥穩(wěn)又準,連乘結果是基礎。 二次三項式的因式分解 先想完全平方式,十字相乘是其次。 兩種方法行不通,求根分解去嘗試。 比和比例 兩數相除也叫比,兩比相等叫比例。 外項積等內項積,等積可化八比例。 分別交換內外項,統(tǒng)統(tǒng)都要叫更比。 同時交換內外項,便要稱其為反比。 前后項和比后項,比值不變叫合比。 前后項差比后項,組成比例是分比。 兩項和比兩項差,比值相等合分比。 前項和比后項和,比值不變叫等比。 解比例 外項積等內項積,列出方程并解之。 求比值 由已知去求比值,多種途徑可利用。 活用比例七性質,變量替換也走紅。 消元也是好辦法,殊途同歸會變通。 正比例與反比例 商定變量成正比,積定變量成反比。 正比例與反比例 變化過程商一定,兩個變量成正比。 變化過程積一定,兩個變量成反比。 判斷四數成比例 四數是否成比例,遞增遞減先排序。 兩端積等中間積,四數一定成比例。 判斷四式成比例 四式是否成比例,生或降冪先排序。 兩端積等中間積,四式便可成比例。 比例中項 成比例的四項中,外項相同會遇到。 有時內項會相同,比例中項少不了。 比例中項很重要,多種場合會碰到。 成比例的四項中,外項相同有不少。 有時內項會相同,比例中項出現了。 同數平方等異積,比例中項無處逃。 根式與無理式 表示方根代數式,都可稱其為根式。 根式異于無理式,被開方式無限制。 被開方式有字母,才能稱為無理式。 無理式都是根式,區(qū)分它們有標志。 被開方式有字母,又可稱為無理式。 求定義域 求定義域有講究,四項原則須留意。 負數不能開平方,分母為零無意義。 指是分數底正數,數零沒有零次冪。 限制條件不唯一,滿足多個不等式。 求定義域要過關,四項原則須注意。 負數不能開平方,分母為零無意義。 分數指數底正數,數零沒有零次冪。 限制條件不唯一,不等式組求解集。 解一元一次不等式 先去分母再括號,移項合并同類項。 系數化“1”有講究,同乘除負要變向。 先去分母再括號,移項別忘要變號。 同類各項去合并,系數化“1”注意了。 同乘除正無防礙,同乘除負也變號。 解一元一次不等式組 大于頭來小于尾,大小不一中間找。 大大小小沒有解,四種情況全來了。 同向取兩邊,異向取中間。 中間無元素,無解便出現。 幼兒園小鬼當家,(同小相對取較小) 敬老院以老為榮,(同大就要取較大) 軍營里沒老沒少。(大小小大就是它) 大大小小解集空。(小小大大哪有哇) 解一元二次不等式 首先化成一般式,構造函數第二站。 判別式值若非負,曲線橫軸有交點。 a正開口它向上,大于零則取兩邊。 代數式若小于零,解集交點數之間。 方程若無實數根,口上大零解為全。 小于零將沒有解,開口向下正相反。 用平方差公式因式分解 異號兩個平方項,因式分解有辦法。 兩底和乘兩底差,分解結果就是它。 用完全平方公式因式分解 兩平方項在兩端,底積2倍在中部。 同正兩底和平方,全負和方相反數。 分成兩底差平方,方正倍積要為負。 兩邊為負中間正,底差平方相反數。 一平方又一平方,底積2倍在中路。 三正兩底和平方,全負和方相反數。 分成兩底差平方,兩端為正倍積負。 兩邊若負中間正,底差平方相反數。 用公式法解一元二次方程 要用公式解方程,首先化成一般式。 調整系數隨其后,使其成為最簡比。 確定參數abc,計算方程判別式。 判別式值與零比,有無實根便得知。 有實根可套公式,沒有實根要告之。 用常規(guī)配方法解一元二次方程 左未右已先分離,二系化“1”是其次。 一系折半再平方,兩邊同加沒問題。 左邊分解右合并,直接開方去解題。 該種解法叫配方,解方程時多練習。 用間接配方法解一元二次方程 已知未知先分離,因式分解是其次。 調整系數等互反,和差積套恒等式。 完全平方等常數,間接配方顯優(yōu)勢 【注】 恒等式 解一元二次方程 方程沒有一次項,直接開方最理想。 如果缺少常數項,因式分解沒商量。 b、c相等都為零,等根是零不要忘。 b、c同時不為零,因式分解或配方, 也可直接套公式,因題而異擇良方。 正比例函數的鑒別 判斷正比例函數,檢驗當分兩步走。 一量表示另一量, 初中數學口訣 上海市同洲模范學校 宋立峰 有理數的加法運算 同號兩數來相加,絕對值加不變號。 異號相加大減小,大數決定和符號。 互為相反數求和,結果是零須記好。 【注】“大”減“小”是指絕對值的大小。 有理數的減法運算 減正等于加負,減負等于加正。 有理數的乘法運算符號法則 同號得正異號負,一項為零積是零。 合并同類項 說起合并同類項,法則千萬不能忘。 只求系數代數和,字母指數留原樣。 去、添括號法則 去括號或添括號,關鍵要看連接號。 擴號前面是正號,去添括號不變號。 括號前面是負號,去添括號都變號。 解方程 已知未知鬧分離,分離要靠移完成。 移加變減減變加,移乘變除除變乘。 平方差公式 兩數和乘兩數差,等于兩數平方差。 積化和差變兩項,完全平方不是它。 完全平方公式 二數和或差平方,展開式它共三項。 首平方與末平方,首末二倍中間放。 和的平方加聯結,先減后加差平方。 完全平方公式 首平方又末平方,二倍首末在中央。 和的平方加再加,先減后加差平方。 解一元一次方程 先去分母再括號,移項變號要記牢。 同類各項去合并,系數化“1”還沒好。 求得未知須檢驗,回代值等才算了。 解一元一次方程 先去分母再括號,移項合并同類項。 系數化1還沒好,準確無誤不白忙。 因式分解與乘法 和差化積是乘法,乘法本身是運算。 積化和差是分解,因式分解非運算。 因式分解 兩式平方符號異,因式分解你別怕。 兩底和乘兩底差,分解結果就是它。 兩式平方符號同,底積2倍坐中央。 因式分解能與否,符號上面有文章。 同和異差先平方,還要加上正負號。 同正則正負就負,異則需添冪符號。 因式分解 一提二套三分組,十字相乘也上數。 四種方法都不行,拆項添項去重組。 重組無望試求根,換元或者算余數。 多種方法靈活選,連乘結果是基礎。 同式相乘若出現,乘方表示要記住。 【注】 一提(提公因式)二套(套公式) 因式分解 一提二套三分組,叉乘求根也上數。 五種方法都不行,拆項添項去重組。 對癥下藥穩(wěn)又準,連乘結果是基礎。 二次三項式的因式分解 先想完全平方式,十字相乘是其次。 兩種方法行不通,求根分解去嘗試。 比和比例 兩數相除也叫比,兩比相等叫比例。 外項積等內項積,等積可化八比例。 分別交換內外項,統(tǒng)統(tǒng)都要叫更比。 同時交換內外項,便要稱其為反比。 前后項和比后項,比值不變叫合比。 前后項差比后項,組成比例是分比。 兩項和比兩項差,比值相等合分比。 前項和比后項和,比值不變叫等比。 解比例 外項積等內項積,列出方程并解之。 求比值 由已知去求比值,多種途徑可利用。 活用比例七性質,變量替換也走紅。 消元也是好辦法,殊途同歸會變通。 正比例與反比例 商定變量成正比,積定變量成反比。 正比例與反比例 變化過程商一定,兩個變量成正比。 變化過程積一定,兩個變量成反比。 判斷四數成比例 四數是否成比例,遞增遞減先排序。 兩端積等中間積,四數一定成比例。 判斷四式成比例 四式是否成比例,生或降冪先排序。 兩端積等中間積,四式便可成比例。 比例中項 成比例的四項中,外項相同會遇到。 有時內項會相同,比例中項少不了。 比例中項很重要,多種場合會碰到。 成比例的四項中,外項相同有不少。 有時內項會相同,比例中項出現了。 同數平方等異積,比例中項無處逃。 根式與無理式 表示方根代數式,都可稱其為根式。 根式異于無理式,被開方式無限制。 被開方式有字母,才能稱為無理式。 無理式都是根式,區(qū)分它們有標志。 被開方式有字母,又可稱為無理式。 求定義域 求定義域有講究,四項原則須留意。 負數不能開平方,分母為零無意義。 指是分數底正數,數零沒有零次冪。 限制條件不唯一,滿足多個不等式。 求定義域要過關,四項原則須注意。 負數不能開平方,分母為零無意義。 分數指數底正數,數零沒有零次冪。 限制條件不唯一,不等式組求解集。 解一元一次不等式 先去分母再括號,移項合并同類項。 系數化“1”有講究,同乘除負要變向。 先去分母再括號,移項別忘要變號。 同類各項去合并,系數化“1”注意了。 同乘除正無防礙,同乘除負也變號。 解一元一次不等式組 大于頭來小于尾,大小不一中間找。 大大小小沒有解,四種情況全來了。 同向取兩邊,異向取中間。 中間無元素,無解便出現。 幼兒園小鬼當家,(同小相對取較小) 敬老院以老為榮,(同大就要取較大) 軍營里沒老沒少。(大小小大就是它) 大大小小解集空。(小小大大哪有哇) 解一元二次不等式 首先化成一般式,構造函數第二站。 判別式值若非負,曲線橫軸有交點。 a正開口它向上,大于零則取兩邊。 代數式若小于零,解集交點數之間。 方程若無實數根,口上大零解為全。 小于零將沒有解,開口向下正相反。 用平方差公式因式分解 異號兩個平方項,因式分解有辦法。 兩底和乘兩底差,分解結果就是它。 用完全平方公式因式分解 兩平方項在兩端,底積2倍在中部。 同正兩底和平方,全負和方相反數。 分成兩底差平方,方正倍積要為負。 兩邊為負中間正,底差平方相反數。 一平方又一平方,底積2倍在中路。 三正兩底和平方,全負和方相反數。 分成兩底差平方,兩端為正倍積負。 兩邊若負中間正,底差平方相反數。 用公式法解一元二次方程 要用公式解方程,首先化成一般式。 調整系數隨其后,使其成為最簡比。 確定參數abc,計算方程判別式。 判別式值與零比,有無實根便得知。 有實根可套公式,沒有實根要告之。 用常規(guī)配方法解一元二次方程 左未右已先分離,二系化“1”是其次。 一系折半再平方,兩邊同加沒問題。 左邊分解右合并,直接開方去解題。 該種解法叫配方,解方程時多練習。 用間接配方法解一元二次方程 已知未知先分離,因式分解是其次。 調整系數等互反,和差積套恒等式。 完全平方等常數,間接配方顯優(yōu)勢 【注】 恒等式 解一元二次方程 方程沒有一次項,直接開方最理想。 如果缺少常數項,因式分解沒商量。 b、c相等都為零,等根是零不要忘。 b、c同時不為零,因式分解或配方, 也可直接套公式,因題而異擇良方。 正比例函數的鑒別 判斷正比例函數,檢驗當分兩步走。 一量表示另一量, 是與否。 若有還要看取值,全體實數都要有。 正比例函數是否,辨別需分兩步走。 一量表示另一量, 有沒有。 若有再去看取值,全體實數都需要。 區(qū)分正比例函數,衡量可分兩步走。 一量表示另一量, 是與否。 若有還要看取值,全體實數都要有。 正比例函數的圖象與性質 正比函數圖直線,經過 和原點。 k正一三負二四,變化趨勢記心間。 k正左低右邊高,同大同小向爬山。 k負左高右邊低,一大另小下山巒。 一次函數 一次函數圖直線,經過 點。 k正左低右邊高,越走越高向爬山。 k負左高右邊低,越來越低很明顯。 k稱斜率b截距,截距為零變正函。 反比例函數 反比函數雙曲線,經過 點。 k正一三負二四,兩軸是它漸近線。 k正左高右邊低,一三象限滑下山。 k負左低右邊高,二四象限如爬山。 二次函數 二次方程零換y,二次函數便出現。 全體實數定義域,圖像叫做拋物線。 拋物線有對稱軸,兩邊單調正相反。 a定開口及大小,線軸交點叫頂點。 頂點非高即最低。上低下高很顯眼。 如果要畫拋物線,平移也可去描點, 提取配方定頂點,兩條途徑再挑選。 列表描點后連線,平移規(guī)律記心間。 左加右減括號內,號外上加下要減。 二次方程零換y,就得到二次函數。 圖像叫做拋物線,定義域全體實數。 a定開口及大小,開口向上是正數。 絕對值大開口小,開口向下a負數。 拋物線有對稱軸,增減特性可看圖。 線軸交點叫頂點,頂點縱標最值出。 如果要畫拋物線,描點平移兩條路。 提取配方定頂點,平移描點皆成圖。 列表描點后連線,三點大致定全圖。 若要平移也不難,先畫基礎拋物線, 頂點移到新位置,開口大小隨基礎。 【注】基礎拋物線 直線、射線與線段 直線射線與線段,形狀相似有關聯。 直線長短不確定,可向兩方無限延。 射線僅有一端點,反向延長成直線。 線段定長兩端點,雙向延伸變直線。 兩點定線是共性,組成圖形最常見。 角 一點出發(fā)兩射線,組成圖形叫做角。 共線反向是平角,平角之半叫直角。 平角兩倍成周角,小于直角叫銳角。 直平之間是鈍角,平周之間叫優(yōu)角。 互余兩角和直角,和是平角互補角。 一點出發(fā)兩射線,組成圖形叫做角。 平角反向且共線,平角之半叫直角。 平角兩倍成周角,小于直角叫銳角。 鈍角界于直平間,平周之間叫優(yōu)角。 和為直角叫互余,互為補角和平角。 證等積或比例線段 等積或比例線段,多種途徑可以證。 證等積要改等比,對照圖形看特征。 共點共線線相交,平行截比把題證。 三點定型十分像,想法來把相似證。 圖形明顯不相似,等線段比替換證。 換后結論能成立,原來命題即得證。 實在不行用面積,射影角分線也成。 只要學習肯登攀,手腦并用無不勝。 解無理方程 一無一有各一邊,兩無也要放兩邊。 乘方根號無蹤跡,方程可解無負擔。 兩無一有相對難,兩次乘方也好辦。 特殊情況去換元,得解驗根是必然。 解分式方程 先約后乘公分母,整式方程轉化出。 特殊情況可換元,去掉分母是出路。 求得解后要驗根,原留增舍別含糊。 列方程解應用題 列方程解應用題,審設列解雙檢答。 審題弄清已未知,設元直間兩辦法。 列表畫圖造方程,解方程時守章法。 檢驗準且合題意,問求同一才作答。 添加輔助線 學習幾何體會深,成敗也許一線牽。 分散條件要集中,常要添加輔助線。 畏懼心理不要有,其次要把觀念變。 熟能生巧有規(guī)律,真知灼見靠實踐。 圖中已知有中線,倍長中線把線連。 旋轉構造全等形,等線段角可代換。 多條中線連中點,便可得到中位線。 倘若知角平分線,既可兩邊作垂線。 也可沿線去翻折,全等圖形立呈現。 角分線若加垂線,等腰三角形可見。 角分線加平行線,等線段角位置變。 已知線段中垂線,連接兩端等線段。 輔助線必畫虛線,便與原圖聯系看。 兩點間距離公式 同軸兩點求距離,大減小數就為之。 與軸等距兩個點,間距求法亦如此。 平面任意兩個點,橫縱標差先求值。 差方相加開平方,距離公式要牢記。 矩形的判定 任意一個四邊形,三個直角成矩形; 對角線等互平分,四邊形它是矩形。 已知平行四邊形,一個直角叫矩形; 兩對角線若相等,理所當然為矩形。 菱形的判定 任意一個四邊形,四邊相等成菱形; 四邊形的對角線,垂直互分是菱形。 已知平行四邊形,鄰邊相等叫菱形; 兩對角線若垂直,順理成章為菱形。 希望對你有幫助,加油哦!
文章TAG:數學知識知識點八年八上數學知識點

最近更新

  • 大學生勞動心得,幫忙寫一份大學勞動實踐周的感受和總結謝謝了

    幫忙寫一份大學勞動實踐周的感受和總結謝謝了我感受到家庭的溫馨家庭的溫馨每個人都想擁有的,因為每個人都擁有美好的家庭、幸福的家庭、快樂的家庭……你能深深感受到家庭的溫馨2,大學勞動心 ......

    湘潭市 日期:2023-05-06

  • 夢見自己死了變成靈魂,如何避免陷入職場情緒低迷?

    另外,最近有人讓你心煩、生氣、不開心,所以這種事情在你的夢里發(fā)生靈魂out,甚至在夢里你都覺得很可怕,很焦慮,說明你需要防范小人的圖謀和惡作劇,出行時尤其要注意交通安全,到最后,生 ......

    湘潭市 日期:2023-05-06

  • found怎么讀,找到藏尸處!

    英語[[fa?nd]]釋義:vt搜索,尋找;發(fā)現;思考;感受;得到vi判決,n找到n的名字(Find);(Dan)Fen【復數發(fā)現第三人稱單數發(fā)現現在分詞發(fā)現過去時態(tài)發(fā)現過去分詞發(fā) ......

    湘潭市 日期:2023-05-06

  • 關于讀書的成語故事,奮斗的人

    螢火蟲反射的雪:被螢火蟲照亮讀書,被雪燈照亮讀書,指讀書努力,比喻在生活非常困難的條件下,堅持讀書的典故;3、螢火映雪,暗指讀書,描寫勤奮的典故讀書;6.邊巍的三個必須,描述窮人晚 ......

    湘潭市 日期:2023-05-06

  • 外婆的故事,阿廖沙和外婆的故事作文

    阿廖沙和外婆的故事作文阿廖沙:在黑暗污濁的環(huán)境中依然保持著對生活的勇氣和信心,并逐漸成長為一個堅強、勇敢、正直和充滿愛心的人外婆:慈祥善良,聰明能干,熱愛生活,對誰都很忍讓。有著圣 ......

    湘潭市 日期:2023-05-06

  • 外貿電子商務,外貿電子商務是什么樣的一個崗位主要干什么的我看見一家手機

    外貿電子商務是什么樣的一個崗位主要干什么的我看見一家手機統(tǒng)籌講就是做外貿的如果強調了電子商務很有可能具體是做外貿銷售--就是做業(yè)務的通過網上平臺聯系客戶達成交易。個人淺見僅供參考外 ......

    湘潭市 日期:2023-05-05

  • 兒子用英語怎么說,兒子翻譯英語

    兒子翻譯英語你要問的是什么呢?難道是問兒子用英語怎么說嗎???兒子的英文是"son"{0}2,兒子英語怎么說兒子-sonson兒子son讀“散”。。。。{1}3 ......

    湘潭市 日期:2023-05-05

  • 關雎詩經,詩經關雎

    詩經關雎求之不得,寤寐思服.悠哉悠哉,輾轉反側.{0}2,詩經關雎的詩詩·周南·關雎關關雎鳩,在河之洲。窈窕淑女,君子好逑。參差荇菜,左右流之。窈窕淑女,寤寐求之。求之不得,寤寤思 ......

    湘潭市 日期:2023-05-05

主站蜘蛛池模板: 临海市| 孝昌县| 东城区| 吴旗县| 铜鼓县| 山东省| 上蔡县| 水城县| 阜城县| 曲松县| 日喀则市| 安图县| 安仁县| 漳州市| 鄂托克旗| 界首市| 山西省| 区。| 苏尼特左旗| 巫溪县| 邳州市| 措勤县| 沁阳市| 高青县| 巧家县| 罗田县| 宣化县| 秀山| 武山县| 庆云县| 阿荣旗| 扎囊县| 同德县| 浮梁县| 仪征市| 多伦县| 保山市| 彩票| 舟山市| 玛曲县| 大冶市|