色天下一区二区三区,少妇精品久久久一区二区三区,中文字幕日韩高清,91精品国产91久久久久久最新毛片

首頁 > 天津 > 河?xùn)|區(qū) > 高一數(shù)學(xué)必修一,高一數(shù)學(xué)必修一

高一數(shù)學(xué)必修一,高一數(shù)學(xué)必修一

來源:整理 時(shí)間:2023-05-14 10:09:55 編輯:好學(xué)習(xí) 手機(jī)版

本文目錄一覽

1,高一數(shù)學(xué)必修一

質(zhì)數(shù)又稱素?cái)?shù)。指在一個(gè)大于1的自然數(shù)中,除了1和此整數(shù)自身外,沒法被其他自然數(shù)整除的數(shù)。換句話說,只有兩個(gè)正因數(shù)(1和自己)的自然數(shù)即為素?cái)?shù)。比1大但不是素?cái)?shù)的數(shù)稱為合數(shù)。1和0既非素?cái)?shù)也非合數(shù)。素?cái)?shù)在數(shù)論中有著很重要的地位。最小的素?cái)?shù)是2, 它也是唯一的偶素?cái)?shù)。 謝謝

高一數(shù)學(xué)必修一

2,高一數(shù)學(xué)必修一那點(diǎn)事

我先批評(píng)你一下,首先你要有信心,不要?dú)怵H,知道嗎? 高一數(shù)學(xué)根本不和以前的只是掛鉤,都是從頭開始學(xué),當(dāng)然必要的只是你的知道,比如說解一個(gè)簡單的函數(shù)或者基本的計(jì)算都應(yīng)該沒問題才行,不過,從你的話中可以看出你應(yīng)該是一個(gè)對數(shù)學(xué)感興趣的同學(xué),沒大問題,數(shù)學(xué)不懂一定要問,這時(shí)候不問等考試時(shí)又來后悔,不值得,學(xué)生老師題天經(jīng)地義,不要怕笑。 高一的數(shù)學(xué)跟初中有個(gè)轉(zhuǎn)向,開始很不習(xí)慣,知識(shí)也是全新的,所以學(xué)習(xí)的時(shí)候吃難,不過這種現(xiàn)象過一段時(shí)間就過了,我也有過這段時(shí)期,這時(shí)候你要多做做題來見識(shí)見識(shí)題型,就做基礎(chǔ)題,適應(yīng)適應(yīng),我想你能到soso問問上來問關(guān)于怎樣學(xué)好數(shù)學(xué),相信你能夠做到的~~加油,更希望你能在新起點(diǎn)快人一步~~
做多了就會(huì)做咯 再說 高中數(shù)學(xué)是分模塊學(xué)習(xí)的 但是每一個(gè)模塊都很重要

高一數(shù)學(xué)必修一那點(diǎn)事

3,高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)必修1第一章知識(shí)點(diǎn)總結(jié)一、集合有關(guān)概念1. 集合的含義2. 集合的中元素的三個(gè)特性:(1) 元素的確定性,(2) 元素的互異性,(3) 元素的無序性, 3.集合的表示:(1) 用拉丁字母表示集合:A=(2) 集合的表示方法:列舉法與描述法。? 注意:常用數(shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集) 記作:N正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R1) 列舉法:2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。3) 語言描述法:例:4) Venn圖:4、集合的分類:(1) 有限集 含有有限個(gè)元素的集合(2) 無限集 含有無限個(gè)元素的集合(3) 空集 不含任何元素的集合 例:二、集合間的基本關(guān)系1.“包含”關(guān)系—子集注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)實(shí)例:設(shè) A=即:① 任何一個(gè)集合是它本身的子集。A?A②真子集:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)③如果 A?B, B?C ,那么 A?C④ 如果A?B 同時(shí) B?A 那么A=B3. 不含任何元素的集合叫做空集,記為Φ規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集三、集合的運(yùn)算運(yùn)算類型 交 集 并 集 補(bǔ) 集定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作A交B),即A B={x|x A,且x B}.由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作A并B),即A B =設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)記作 ,即CSA= 韋恩圖示 性 質(zhì) A A=A A Φ=ΦA(chǔ) B=B AA B A A B BA A=AA Φ=AA B=B AA B AA B B(CuA) (CuB)= Cu (A B)(CuA) (CuB)= Cu(A B)A (CuA)=UA (CuA)= Φ.例題:1.下列四組對象,能構(gòu)成集合的是 ( )A某班所有高個(gè)子的學(xué)生 B著名的藝術(shù)家 C一切很大的書 D 倒數(shù)等于它自身的實(shí)數(shù)2.集合3.若集合M=4.設(shè)集合A= ,B= ,若A B,則 的取值范圍是 5.50名學(xué)生做的物理、化學(xué)兩種實(shí)驗(yàn),已知物理實(shí)驗(yàn)做得正確得有40人,化學(xué)實(shí)驗(yàn)做得正確得有31人,兩種實(shí)驗(yàn)都做錯(cuò)得有4人,則這兩種實(shí)驗(yàn)都做對的有 人。6. 用描述法表示圖中陰影部分的點(diǎn)(含邊界上的點(diǎn))組成的集合M= .7.已知集合A=二、函數(shù)的有關(guān)概念1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合注意:1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零; (3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零, (7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.? 相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)(見課本21頁相關(guān)例2)2.值域 : 先考慮其定義域(1)觀察法 (2)配方法(3)代換法3. 函數(shù)圖象知識(shí)歸納(1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 . (2) 畫法A、 描點(diǎn)法:B、 圖象變換法常用變換方法有三種1) 平移變換2) 伸縮變換3) 對稱變換4.區(qū)間的概念(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間(2)無窮區(qū)間(3)區(qū)間的數(shù)軸表示.5.映射一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應(yīng)法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A B為從集合A到集合B的一個(gè)映射。記作f:A→B6.分段函數(shù) (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。(2)各部分的自變量的取值情況.(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.補(bǔ)充:復(fù)合函數(shù)如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復(fù)合函數(shù)。 二.函數(shù)的性質(zhì)1.函數(shù)的單調(diào)性(局部性質(zhì))(1)增函數(shù)設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1如果對于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì); (2) 圖象的特點(diǎn) 如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的. (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法 (A) 定義法: ○1 任取x1,x2∈D,且x1 ○2 作差f(x1)-f(x2); ○3 變形(通常是因式分解和配方); ○4 定號(hào)(即判斷差f(x1)-f(x2)的正負(fù)); ○5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性). (B)圖象法(從圖象上看升降) (C)復(fù)合函數(shù)的單調(diào)性 復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減” 注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集. 8.函數(shù)的奇偶性(整體性質(zhì)) (1)偶函數(shù) 一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù). (2).奇函數(shù) 一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù). (3)具有奇偶性的函數(shù)的圖象的特征 偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱. 利用定義判斷函數(shù)奇偶性的步驟: ○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對稱; ○2確定f(-x)與f(x)的關(guān)系; ○3作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù). (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數(shù)的圖象判定 . 9、函數(shù)的解析表達(dá)式 (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域. (2)求函數(shù)的解析式的主要方法有: 1) 湊配法 2) 待定系數(shù)法 3) 換元法 4) 消參法 10.函數(shù)最大(小)值(定義見課本p36頁) ○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值 ○2 利用圖象求函數(shù)的最大(小)值 ○3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值: 如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b); 如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b); 例題: 1.求下列函數(shù)的定義域: ⑴ ⑵ 2.設(shè)函數(shù) 的定義域?yàn)?,則函數(shù) 的定義域?yàn)開 _ 3.若函數(shù) 的定義域?yàn)?,則函數(shù) 的定義域是 4.函數(shù) ,若 ,則 = 6.已知函數(shù) ,求函數(shù) , 的解析式 7.已知函數(shù) 滿足 ,則 = 。 8.設(shè) 是R上的奇函數(shù),且當(dāng) 時(shí), ,則當(dāng) 時(shí) = 在R上的解析式為 9.求下列函數(shù)的單調(diào)區(qū)間: ⑴ (2) 10.判斷函數(shù) 的單調(diào)性并證明你的結(jié)論. 11.設(shè)函數(shù) 判斷它的奇偶性并且求證: .
沒有
http://read.baidu.com/view/1dc8306b011ca300a6c390f8.html
第一章 集合與函數(shù)概念一、集合有關(guān)概念 1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。 2、集合的中元素的三個(gè)特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性 說明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。 (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。 (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。 (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。 3、集合的表示:非負(fù)整數(shù)集(即自然數(shù)集) 記作:n 正整數(shù)集 n*或 n+ 整數(shù)集z 有理數(shù)集q 實(shí)數(shù)集r 關(guān)于“屬于”的概念 集合的元素通常用小寫的拉丁字母表示,如:a是集合a的元素,就說a屬于集合a 記作 a∈a ,相反,a不屬于集合a 記作 a a 列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。 描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。 ①語言描述法:例:②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是1.有限集 含有有限個(gè)元素的集合 2.無限集 含有無限個(gè)元素的集合 3.空集 不含任何元素的集合 例:注意:ba?有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。 反之: 集合a不包含于集合b,或集合b不包含集合a,記作a??b或b??a 2.“相等”關(guān)系(5≥5,且5≤5,則5=5)實(shí)例:設(shè) a=結(jié)論:對于兩個(gè)集合a與b,如果集合a的任何一個(gè)元素都是集合b的元素,同時(shí),集合b的任何一個(gè)元素都是集合a的元素,我們就說集合a等于集合b,即:a=b ① 任何一個(gè)集合是它本身的子集。a a ②真子集:如果a b,且a b那就說集合a是集合b的真子集,記作ab(或ba) ③如果 a b, b c ,那么 a c ④ 如果a b 同時(shí) b a 那么a=b 3. 不含任何元素的集合叫做空集,記為φ 規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的運(yùn)算 1.交集的定義:一般地,由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集. 記作a∩b(讀作"a交b"),即a∩b=2、并集的定義:一般地,由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做a,b的并集。記作:a∪b(讀作"a并b"),即a∪b=4、全集與補(bǔ)集 (1)補(bǔ)集:設(shè)s是一個(gè)集合,a是s的一個(gè)子集(即sa?),由s中所有不屬于a的元素組成的集合,叫做s中子集a的補(bǔ)集(或余集) 記作: csa 即 csa =(2)全集:如果集合s含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用u來表示。 (3)性質(zhì):⑴cu(c ua)=a ⑵(c ua)∩a=φ ⑶(cua)∪a=u 二、函數(shù)的有關(guān)概念 1.函數(shù)的概念:設(shè)a、b是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合a中的任意一個(gè)數(shù)x,在集合b中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:a→b為從集合a到集合b的一個(gè)函數(shù).記作: y=f(x),x∈a.其中,x叫做自變量,x的取值范圍a叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零; (3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零 (7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義. (注意:求出不等式組的解集即為函數(shù)的定義域。) 構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域 再注意:(1)構(gòu)成函數(shù)三個(gè)要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致 (兩點(diǎn)必須同時(shí)具備)值域補(bǔ)充 (1)、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域. (2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。 3. 函數(shù)圖象知識(shí)歸納 (1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈a)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)p(x,y)的集合c,叫做函數(shù) y=f(x),(x ∈a)的圖象. c上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在c上 . 即記為c=圖象c一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與y軸的直線最多只有一個(gè)交點(diǎn)的若干條曲線或離散點(diǎn)組成。 (2) 畫法 a、描點(diǎn)法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn)p(x, y),最后用平滑的曲線將這些點(diǎn)連接起來. b、圖象變換法(請參考必修4三角函數(shù)) 常用變換方法有三種,即平移變換、伸縮變換和對稱變換 (3)作用: 1、直觀的看出函數(shù)的性質(zhì);2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。 3.解區(qū)間的概念 (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示. 4.映射 一般地,設(shè)a、b是兩個(gè)非空的集合,如果按某一個(gè)確定的對應(yīng)法則f,使對于集合a中的任意一個(gè)元素x,在集合b中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:a?b為從集合a到集合b的一個(gè)映射。記作“f:a?b” 給定一個(gè)集合a到b的映射,如果a∈a,b∈b.且元素a和元素b對應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象 說明:函數(shù)是一種特殊的映射,映射是一種特殊的對應(yīng),①集合a、b及對應(yīng)法則f是確定的;②對應(yīng)法則有“方向性”,即強(qiáng)調(diào)從集合a到集合b的對應(yīng),它與從b到a的對應(yīng)關(guān)系一般是不同的;③對于映射f:a→b來說,則應(yīng)滿足:(ⅰ)集合a中的每一個(gè)元素,在集合b中都有象,并且象是唯一的;(ⅱ)集合a中不同的元素,在集合b中對應(yīng)的象。
第一章 集合與函數(shù)概念一、集合有關(guān)概念 1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。 2、集合的中元素的三個(gè)特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性 說明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。 (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。 (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。 (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。 3、集合的表示:非負(fù)整數(shù)集(即自然數(shù)集) 記作:n 正整數(shù)集 n*或 n+ 整數(shù)集z 有理數(shù)集q 實(shí)數(shù)集r 關(guān)于“屬于”的概念 集合的元素通常用小寫的拉丁字母表示,如:a是集合a的元素,就說a屬于集合a 記作 a∈a ,相反,a不屬于集合a 記作 a a 列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。 描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。 ①語言描述法:例:②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是1.有限集 含有有限個(gè)元素的集合 2.無限集 含有無限個(gè)元素的集合 3.空集 不含任何元素的集合 例:注意:ba?有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。 反之: 集合a不包含于集合b,或集合b不包含集合a,記作a??b或b??a 2.“相等”關(guān)系(5≥5,且5≤5,則5=5)實(shí)例:設(shè) a=結(jié)論:對于兩個(gè)集合a與b,如果集合a的任何一個(gè)元素都是集合b的元素,同時(shí),集合b的任何一個(gè)元素都是集合a的元素,我們就說集合a等于集合b,即:a=b ① 任何一個(gè)集合是它本身的子集。a a ②真子集:如果a b,且a b那就說集合a是集合b的真子集,記作ab(或ba) ③如果 a b, b c ,那么 a c ④ 如果a b 同時(shí) b a 那么a=b 3. 不含任何元素的集合叫做空集,記為φ 規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的運(yùn)算 1.交集的定義:一般地,由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集. 記作a∩b(讀作"a交b"),即a∩b=2、并集的定義:一般地,由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做a,b的并集。記作:a∪b(讀作"a并b"),即a∪b=4、全集與補(bǔ)集 (1)補(bǔ)集:設(shè)s是一個(gè)集合,a是s的一個(gè)子集(即sa?),由s中所有不屬于a的元素組成的集合,叫做s中子集a的補(bǔ)集(或余集) 記作: csa 即 csa =(2)全集:如果集合s含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用u來表示。 (3)性質(zhì):⑴cu(c ua)=a ⑵(c ua)∩a=φ ⑶(cua)∪a=u 二、函數(shù)的有關(guān)概念 1.函數(shù)的概念:設(shè)a、b是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合a中的任意一個(gè)數(shù)x,在集合b中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:a→b為從集合a到集合b的一個(gè)函數(shù).記作: y=f(x),x∈a.其中,x叫做自變量,x的取值范圍a叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零; (3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零 (7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義. (注意:求出不等式組的解集即為函數(shù)的定義域。) 構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域 再注意:(1)構(gòu)成函數(shù)三個(gè)要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致 (兩點(diǎn)必須同時(shí)具備)值域補(bǔ)充 (1)、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域. (2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。 3. 函數(shù)圖象知識(shí)歸納 (1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈a)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)p(x,y)的集合c,叫做函數(shù) y=f(x),(x ∈a)的圖象. c上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在c上 . 即記為c=圖象c一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與y軸的直線最多只有一個(gè)交點(diǎn)的若干條曲線或離散點(diǎn)組成。 (2) 畫法 a、描點(diǎn)法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn)p(x, y),最后用平滑的曲線將這些點(diǎn)連接起來. b、圖象變換法(請參考必修4三角函數(shù)) 常用變換方法有三種,即平移變換、伸縮變換和對稱變換 (3)作用: 1、直觀的看出函數(shù)的性質(zhì);2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。 3.解區(qū)間的概念 (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示. 4.映射 一般地,設(shè)a、b是兩個(gè)非空的集合,如果按某一個(gè)確定的對應(yīng)法則f,使對于集合a中的任意一個(gè)元素x,在集合b中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:a?b為從集合a到集合b的一個(gè)映射。記作“f:a?b” 給定一個(gè)集合a到b的映射,如果a∈a,b∈b.且元素a和元素b對應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象 說明:函數(shù)是一種特殊的映射,映射是一種特殊的對應(yīng),①集合a、b及對應(yīng)法則f是確定的;②對應(yīng)法則有“方向性”,即強(qiáng)調(diào)從集合a到集合b的對應(yīng),它與從b到a的對應(yīng)關(guān)系一般是不同的;③對于映射f:a→b來說,則應(yīng)滿足:(ⅰ)集合a中的每一個(gè)元素,在集合b中都有象,并且象是唯一的;(ⅱ)集合a中不同的元素,在集合b中對應(yīng)的象。

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

4,高一數(shù)學(xué)必修一總結(jié)

高中高一數(shù)學(xué)必修1各章知識(shí)點(diǎn)總結(jié) 第一章 集合與函數(shù)概念 一、集合有關(guān)概念 1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。 2、集合的中元素的三個(gè)特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性 說明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。 (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。 (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。 (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。 3、集合的表示:1. 用拉丁字母表示集合:A=2.集合的表示方法:列舉法與描述法。 注意啊:常用數(shù)集及其記法: 非負(fù)整數(shù)集(即自然數(shù)集) 記作:N 正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R 關(guān)于“屬于”的概念 集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 a∈A ,相反,a不屬于集合A 記作 a?A 列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。 描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。 ①語言描述法:例:②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是4、集合的分類: 1.有限集 含有有限個(gè)元素的集合 2.無限集 含有無限個(gè)元素的集合 3.空集 不含任何元素的集合  例:二、集合間的基本關(guān)系 1.“包含”關(guān)系—子集 注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A 2.“相等”關(guān)系(5≥5,且5≤5,則5=5) 實(shí)例:設(shè) A=結(jié)論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B ① 任何一個(gè)集合是它本身的子集。A?A ②真子集:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④ 如果A?B 同時(shí) B?A 那么A=B 3. 不含任何元素的集合叫做空集,記為Φ 規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的運(yùn)算 1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集. 記作A∩B(讀作”A交B”),即A∩B=2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B=3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A. 4、全集與補(bǔ)集 (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集) 記作: CSA 即 CSA =(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來表示。 (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U 二、函數(shù)的有關(guān)概念 1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合注意:○2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;○3 函數(shù)的定義域、值域要寫成集合或區(qū)間的形式. 定義域補(bǔ)充 能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零; (3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零 (6)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義. (又注意:求出不等式組的解集即為函數(shù)的定義域。) 2. 構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域 再注意:(1)構(gòu)成函數(shù)三個(gè)要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致 (兩點(diǎn)必須同時(shí)具備) (見課本21頁相關(guān)例2) 值域補(bǔ)充 (1)、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域. (2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。 3. 函數(shù)圖象知識(shí)歸納 (1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象. C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 . 即記為C=圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個(gè)交點(diǎn)的若干條曲線或離散點(diǎn)組成。 (2) 畫法 A、描點(diǎn)法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn)P(x, y),最后用平滑的曲線將這些點(diǎn)連接起來. B、圖象變換法(請參考必修4三角函數(shù)) 常用變換方法有三種,即平移變換、伸縮變換和對稱變換 (3)作用: 1、直觀的看出函數(shù)的性質(zhì);2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。 發(fā)現(xiàn)解題中的錯(cuò)誤。 4.快去了解區(qū)間的概念 (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示. 5.什么叫做映射 一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應(yīng)法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A B為從集合A到集合B的一個(gè)映射。記作“f:A B” 給定一個(gè)集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象 說明:函數(shù)是一種特殊的映射,映射是一種特殊的對應(yīng),①集合A、B及對應(yīng)法則f是確定的;②對應(yīng)法則有“方向性”,即強(qiáng)調(diào)從集合A到集合B的對應(yīng),它與從B到A的對應(yīng)關(guān)系一般是不同的;③對于映射f:A→B來說,則應(yīng)滿足:(Ⅰ)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個(gè);(Ⅲ)不要求集合B中的每一個(gè)元素在集合A中都有原象。 6. 常用的函數(shù)表示法及各自的優(yōu)點(diǎn): ○1 函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點(diǎn)等等,注意判斷一個(gè)圖形是否是函數(shù)圖象的依據(jù);○2 解析法:必須注明函數(shù)的定義域;○3 圖象法:描點(diǎn)法作圖要注意:確定函數(shù)的定義域;化簡函數(shù)的解析式;觀察函數(shù)的特征;○4 列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征. 注意啊:解析法:便于算出函數(shù)值。列表法:便于查出函數(shù)值。圖象法:便于量出函數(shù)值 補(bǔ)充一:分段函數(shù) (參見課本P24-25) 在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。在不同的范圍里求函數(shù)值時(shí)必須把自變量代入相應(yīng)的表達(dá)式。分段函數(shù)的解析式不能寫成幾個(gè)不同的方程,而就寫函數(shù)值幾種不同的表達(dá)式并用一個(gè)左大括號(hào)括起來,并分別注明各部分的自變量的取值情況.(1)分段函數(shù)是一個(gè)函數(shù),不要把它誤認(rèn)為是幾個(gè)函數(shù);(2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集. 補(bǔ)充二:復(fù)合函數(shù) 如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復(fù)合函數(shù)。 例如: y=2sinX y=2cos(X2+1) 7.函數(shù)單調(diào)性 (1).增函數(shù) 設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1如果對于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1注意:○1 函數(shù)的單調(diào)性是在定義域內(nèi)的某個(gè)區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì); ○2 必須是對于區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2;當(dāng)x1(2) 圖象的特點(diǎn) 如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的. (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法 (A) 定義法: ○1 任取x1,x2∈D,且x1(B)圖象法(從圖象上看升降)_ (C)復(fù)合函數(shù)的單調(diào)性 復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律如下: 函數(shù) 單調(diào)性 u=g(x) 增 增 減 減 y=f(u) 增 減 增 減 y=f[g(x)] 增 減 減 增 注意:1、函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集. 2、還記得我們在選修里學(xué)習(xí)簡單易行的導(dǎo)數(shù)法判定單調(diào)性嗎? 8.函數(shù)的奇偶性 (1)偶函數(shù) 一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù). (2).奇函數(shù) 一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù). 注意:○1 函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。 ○2 由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對稱). (3)具有奇偶性的函數(shù)的圖象的特征 偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱. 總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:○1 首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對稱;○2 確定f(-x)與f(x)的關(guān)系;○3 作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù). 注意啊:函數(shù)定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定; (2)有時(shí)判定f(-x)=±f(x)比較困難,可考慮根據(jù)是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數(shù)的圖象判定 . 9、函數(shù)的解析表達(dá)式 (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域. (2).求函數(shù)的解析式的主要方法有:待定系數(shù)法、換元法、消參法等,如果已知函數(shù)解析式的構(gòu)造時(shí),可用待定系數(shù)法;已知復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法,這時(shí)要注意元的取值范圍;當(dāng)已知表達(dá)式較簡單時(shí),也可用湊配法;若已知抽象函數(shù)表達(dá)式,則常用解方程組消參的方法求出f(x) 10.函數(shù)最大(小)值(定義見課本p36頁) ○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值○2 利用圖象求函數(shù)的最大(小)值○3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b); 第二章 基本初等函數(shù) 一、指數(shù)函數(shù) (一)指數(shù)與指數(shù)冪的運(yùn)算 1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *. 當(dāng) 是奇數(shù)時(shí),正數(shù)的 次方根是一個(gè)正數(shù),負(fù)數(shù)的 次方根是一個(gè)負(fù)數(shù).此時(shí), 的 次方根用符號(hào) 表示.式子 叫做根式(radical),這里 叫做根指數(shù)(radical exponent), 叫做被開方數(shù)(radicand). 當(dāng) 是偶數(shù)時(shí),正數(shù)的 次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù) 的正的 次方根用符號(hào) 表示,負(fù)的 次方根用符號(hào)- 表示.正的 次方根與負(fù)的 次方根可以合并成± ( >0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作 。 注意:當(dāng) 是奇數(shù)時(shí), ,當(dāng) 是偶數(shù)時(shí), 2.分?jǐn)?shù)指數(shù)冪 正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定: , 0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義 指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪. 3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì) (1) ? ; (2) ; (3) . (二)指數(shù)函數(shù)及其性質(zhì) 1、指數(shù)函數(shù)的概念:一般地,函數(shù) 叫做指數(shù)函數(shù)(exponential function),其中x是自變量,函數(shù)的定義域?yàn)镽. 注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1. 2、指數(shù)函數(shù)的圖象和性質(zhì) a>1 0圖象特征 函數(shù)性質(zhì) 向x、y軸正負(fù)方向無限延伸 函數(shù)的定義域?yàn)镽 圖象關(guān)于原點(diǎn)和y軸不對稱 非奇非偶函數(shù) 函數(shù)圖象都在x軸上方 函數(shù)的值域?yàn)镽+ 函數(shù)圖象都過定點(diǎn)(0,1) 自左向右看, 圖象逐漸上升 自左向右看, 圖象逐漸下降 增函數(shù) 減函數(shù) 在第一象限內(nèi)的圖象縱坐標(biāo)都大于1 在第一象限內(nèi)的圖象縱坐標(biāo)都小于1 在第二象限內(nèi)的圖象縱坐標(biāo)都小于1 在第二象限內(nèi)的圖象縱坐標(biāo)都大于1 圖象上升趨勢是越來越陡 圖象上升趨勢是越來越緩 函數(shù)值開始增長較慢,到了某一值后增長速度極快; 函數(shù)值開始減小極快,到了某一值后減小速度較慢; 注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出: (1)在[a,b]上, 值域是 或 ; (2)若 ,則 ; 取遍所有正數(shù)當(dāng)且僅當(dāng) ; (3)對于指數(shù)函數(shù) ,總有 ; (4)當(dāng) 時(shí),若 ,則 ; 二、對數(shù)函數(shù) (一)對數(shù) 1.對數(shù)的概念:一般地,如果 ,那么數(shù) 叫做以 為底 的對數(shù),記作: ( — 底數(shù), — 真數(shù), — 對數(shù)式) 說明:○1 注意底數(shù)的限制 ,且 ; ○2 ; ○3 注意對數(shù)的書寫格式. 兩個(gè)重要對數(shù): ○1 常用對數(shù):以10為底的對數(shù) ; ○2 自然對數(shù):以無理數(shù) 為底的對數(shù)的對數(shù) . 2、 對數(shù)式與指數(shù)式的互化 對數(shù)式 指數(shù)式 對數(shù)底數(shù) ← → 冪底數(shù) 對數(shù) ← → 指數(shù) 真數(shù) ← → 冪 (二)對數(shù)的運(yùn)算性質(zhì) 如果 ,且 , , ,那么: ○1 ? + ; ○2 - ; ○3 . 注意:換底公式 ( ,且 ; ,且 ; ). 利用換底公式推導(dǎo)下面的結(jié)論(1) ;(2) . (二)對數(shù)函數(shù) 1、對數(shù)函數(shù)的概念:函數(shù) ,且 叫做對數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是(0,+∞). 注意:○1 對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。 如: , 都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù). ○2 對數(shù)函數(shù)對底數(shù)的限制: ,且 . 2、對數(shù)函數(shù)的性質(zhì): a>1 0圖象特征 函數(shù)性質(zhì) 函數(shù)圖象都在y軸右側(cè) 函數(shù)的定義域?yàn)椋?,+∞) 圖象關(guān)于原點(diǎn)和y軸不對稱 非奇非偶函數(shù) 向y軸正負(fù)方向無限延伸 函數(shù)的值域?yàn)镽 函數(shù)圖象都過定點(diǎn)(1,0) 自左向右看, 圖象逐漸上升 自左向右看, 圖象逐漸下降 增函數(shù) 減函數(shù) 第一象限的圖象縱坐標(biāo)都大于0 第一象限的圖象縱坐標(biāo)都大于0 第二象限的圖象縱坐標(biāo)都小于0 第二象限的圖象縱坐標(biāo)都小于0 (三)冪函數(shù) 1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中 為常數(shù). 2、冪函數(shù)性質(zhì)歸納. (1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過點(diǎn)(1,1); (2) 時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間 上是增函數(shù).特別地,當(dāng) 時(shí),冪函數(shù)的圖象下凸;當(dāng) 時(shí),冪函數(shù)的圖象上凸; (3) 時(shí),冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當(dāng) 從右邊趨向原點(diǎn)時(shí),圖象在 軸右方無限地逼近 軸正半軸,當(dāng) 趨于 時(shí),圖象在 軸上方無限地逼近 軸正半軸. 第三章 函數(shù)的應(yīng)用 一、方程的根與函數(shù)的零點(diǎn) 1、函數(shù)零點(diǎn)的概念:對于函數(shù) ,把使 成立的實(shí)數(shù) 叫做函數(shù) 的零點(diǎn)。 2、函數(shù)零點(diǎn)的意義:函數(shù) 的零點(diǎn)就是方程 實(shí)數(shù)根,亦即函數(shù) 的圖象與 軸交點(diǎn)的橫坐標(biāo)。即: 方程 有實(shí)數(shù)根 函數(shù) 的圖象與 軸有交點(diǎn) 函數(shù) 有零點(diǎn). 3、函數(shù)零點(diǎn)的求法: 求函數(shù) 的零點(diǎn): ○1 (代數(shù)法)求方程 的實(shí)數(shù)根; ○2 (幾何法)對于不能用求根公式的方程,可以將它與函數(shù) 的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn). 4、二次函數(shù)的零點(diǎn): 二次函數(shù) . 1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn). 2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn). 3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn).
高中高一數(shù)學(xué)必修1各章知識(shí)點(diǎn)總結(jié)第一章 集合與函數(shù)概念一、集合有關(guān)概念1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。2、集合的中元素的三個(gè)特性:1.元素的確定性; 2.元素的互異性; 3.元素的無序性說明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。(3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。3、集合的表示:1. 用拉丁字母表示集合:A=2.集合的表示方法:列舉法與描述法。注意啊:常用數(shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集)記作:N正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R關(guān)于“屬于”的概念集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 a∈A ,相反,a不屬于集合A 記作 a?A列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。①語言描述法:例:②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是4、集合的分類:1.有限集 含有有限個(gè)元素的集合2.無限集 含有無限個(gè)元素的集合3.空集 不含任何元素的集合 例:二、集合間的基本關(guān)系1.“包含”關(guān)系—子集注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2.“相等”關(guān)系(5≥5,且5≤5,則5=5)實(shí)例:設(shè) A=結(jié)論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B① 任何一個(gè)集合是它本身的子集。AíA②真子集:如果AíB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)③如果 AíB, BíC ,那么 AíC④ 如果AíB 同時(shí) BíA 那么A=B3. 不含任何元素的集合叫做空集,記為Φ規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的運(yùn)算1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A∩B(讀作”A交B”),即A∩B=2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B=3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集與補(bǔ)集(1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)記作: CSA 即 CSA =SCsAA(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來表示。(3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U二、函數(shù)的有關(guān)概念1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合注意:2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;3 函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.定義域補(bǔ)充能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零; (3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零 (6)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.(又注意:求出不等式組的解集即為函數(shù)的定義域。)構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域再注意:(1)構(gòu)成函數(shù)三個(gè)要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致 (兩點(diǎn)必須同時(shí)具備)(見課本21頁相關(guān)例2)值域補(bǔ)充(1)、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域. (2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。3. 函數(shù)圖象知識(shí)歸納(1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 . 即記為C=圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個(gè)交點(diǎn)的若干條曲線或離散點(diǎn)組成。(2) 畫法A、描點(diǎn)法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn)P(x, y),最后用平滑的曲線將這些點(diǎn)連接起來.B、圖象變換法(請參考必修4三角函數(shù))常用變換方法有三種,即平移變換、伸縮變換和對稱變換(3)作用:1、直觀的看出函數(shù)的性質(zhì);2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。發(fā)現(xiàn)解題中的錯(cuò)誤。4.快去了解區(qū)間的概念(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示.5.什么叫做映射一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應(yīng)法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A B為從集合A到集合B的一個(gè)映射。記作“f:A B”給定一個(gè)集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象說明:函數(shù)是一種特殊的映射,映射是一種特殊的對應(yīng),①集合A、B及對應(yīng)法則f是確定的;②對應(yīng)法則有“方向性”,即強(qiáng)調(diào)從集合A到集合B的對應(yīng),它與從B到A的對應(yīng)關(guān)系一般是不同的;③對于映射f:A→B來說,則應(yīng)滿足:(Ⅰ)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個(gè);(Ⅲ)不要求集合B中的每一個(gè)元素在集合A中都有原象。常用的函數(shù)表示法及各自的優(yōu)點(diǎn):1 函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點(diǎn)等等,注意判斷一個(gè)圖形是否是函數(shù)圖象的依據(jù);2 解析法:必須注明函數(shù)的定義域;3 圖象法:描點(diǎn)法作圖要注意:確定函數(shù)的定義域;化簡函數(shù)的解析式;觀察函數(shù)的特征;4 列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征.注意啊:解析法:便于算出函數(shù)值。列表法:便于查出函數(shù)值。圖象法:便于量出函數(shù)值補(bǔ)充一:分段函數(shù) (參見課本P24-25)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。在不同的范圍里求函數(shù)值時(shí)必須把自變量代入相應(yīng)的表達(dá)式。分段函數(shù)的解析式不能寫成幾個(gè)不同的方程,而就寫函數(shù)值幾種不同的表達(dá)式并用一個(gè)左大括號(hào)括起來,并分別注明各部分的自變量的取值情況.(1)分段函數(shù)是一個(gè)函數(shù),不要把它誤認(rèn)為是幾個(gè)函數(shù);(2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.補(bǔ)充二:復(fù)合函數(shù)如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復(fù)合函數(shù)。例如: y=2sinX y=2cos(X2+1)7.函數(shù)單調(diào)性(1).增函數(shù)設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1如果對于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1注意:1 函數(shù)的單調(diào)性是在定義域內(nèi)的某個(gè)區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì);2 必須是對于區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2;當(dāng)x1(2) 圖象的特點(diǎn)如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A) 定義法:1 任取x1,x2∈D,且x1(B)圖象法(從圖象上看升降)_(C)復(fù)合函數(shù)的單調(diào)性復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律如下:函數(shù) 單調(diào)性u(píng)=g(x) 增 增 減 減y=f(u) 增 減 增 減y=f[g(x)] 增 減 減 增注意:1、函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集. 2、還記得我們在選修里學(xué)習(xí)簡單易行的導(dǎo)數(shù)法判定單調(diào)性嗎?8.函數(shù)的奇偶性(1)偶函數(shù)一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).(2).奇函數(shù)一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).注意:1 函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。2 由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對稱).(3)具有奇偶性的函數(shù)的圖象的特征偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱.總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:1 首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對稱;2 確定f(-x)與f(x)的關(guān)系;3 作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).注意啊:函數(shù)定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定; (2)有時(shí)判定f(-x)=±f(x)比較困難,可考慮根據(jù)是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數(shù)的圖象判定 .9、函數(shù)的解析表達(dá)式(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.(2).求函數(shù)的解析式的主要方法有:待定系數(shù)法、換元法、消參法等,如果已知函數(shù)解析式的構(gòu)造時(shí),可用待定系數(shù)法;已知復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法,這時(shí)要注意元的取值范圍;當(dāng)已知表達(dá)式較簡單時(shí),也可用湊配法;若已知抽象函數(shù)表達(dá)式,則常用解方程組消參的方法求出f(x)10.函數(shù)最大(小)值(定義見課本p36頁)1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值2 利用圖象求函數(shù)的最大(小)值3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);第二章 基本初等函數(shù)一、指數(shù)函數(shù)(一)指數(shù)與指數(shù)冪的運(yùn)算1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *.當(dāng) 是奇數(shù)時(shí),正數(shù)的 次方根是一個(gè)正數(shù),負(fù)數(shù)的 次方根是一個(gè)負(fù)數(shù).此時(shí), 的 次方根用符號(hào) 表示.式子 叫做根式(radical),這里 叫做根指數(shù)(radical exponent), 叫做被開方數(shù)(radicand).當(dāng) 是偶數(shù)時(shí),正數(shù)的 次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù) 的正的 次方根用符號(hào) 表示,負(fù)的 次方根用符號(hào)- 表示.正的 次方根與負(fù)的 次方根可以合并成± ( >0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作 。注意:當(dāng) 是奇數(shù)時(shí), ,當(dāng) 是偶數(shù)時(shí), 2.分?jǐn)?shù)指數(shù)冪正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:, 0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)(1) · ;(2) ;(3) .(二)指數(shù)函數(shù)及其性質(zhì)1、指數(shù)函數(shù)的概念:一般地,函數(shù) 叫做指數(shù)函數(shù)(exponential ),其中x是自變量,函數(shù)的定義域?yàn)镽.注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.2、指數(shù)函數(shù)的圖象和性質(zhì)a>1 0圖象特征 函數(shù)性質(zhì)向x、y軸正負(fù)方向無限延伸 函數(shù)的定義域?yàn)镽圖象關(guān)于原點(diǎn)和y軸不對稱 非奇非偶函數(shù)函數(shù)圖象都在x軸上方 函數(shù)的值域?yàn)镽+函數(shù)圖象都過定點(diǎn)(0,1)自左向右看,圖象逐漸上升 自左向右看,圖象逐漸下降 增函數(shù) 減函數(shù)在第一象限內(nèi)的圖象縱坐標(biāo)都大于1 在第一象限內(nèi)的圖象縱坐標(biāo)都小于1在第二象限內(nèi)的圖象縱坐標(biāo)都小于1 在第二象限內(nèi)的圖象縱坐標(biāo)都大于1圖象上升趨勢是越來越陡 圖象上升趨勢是越來越緩 函數(shù)值開始增長較慢,到了某一值后增長速度極快; 函數(shù)值開始減小極快,到了某一值后減小速度較慢;注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:(1)在[a,b]上, 值域是 或 ;(2)若 ,則 ; 取遍所有正數(shù)當(dāng)且僅當(dāng) ;(3)對于指數(shù)函數(shù) ,總有 ;(4)當(dāng) 時(shí),若 ,則 ;二、對數(shù)函數(shù)(一)對數(shù)1.對數(shù)的概念:一般地,如果 ,那么數(shù) 叫做以 為底 的對數(shù),記作: ( — 底數(shù), — 真數(shù), — 對數(shù)式)說明:1 注意底數(shù)的限制 ,且 ;2 ;3 注意對數(shù)的書寫格式.兩個(gè)重要對數(shù):1 常用對數(shù):以10為底的對數(shù) ;2 自然對數(shù):以無理數(shù) 為底的對數(shù)的對數(shù) .對數(shù)式與指數(shù)式的互化對數(shù)式 指數(shù)式對數(shù)底數(shù) ← → 冪底數(shù)對數(shù) ← → 指數(shù)真數(shù) ← → 冪(二)對數(shù)的運(yùn)算性質(zhì)如果 ,且 , , ,那么:1 · + ;2 - ;3 .注意:換底公式 ( ,且 ; ,且 ; ).利用換底公式推導(dǎo)下面的結(jié)論(1) ;(2) .(二)對數(shù)函數(shù)1、對數(shù)函數(shù)的概念:函數(shù) ,且 叫做對數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是(0,+∞).注意:1 對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如: , 都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).2 對數(shù)函數(shù)對底數(shù)的限制: ,且 .2、對數(shù)函數(shù)的性質(zhì):a>1 0圖象特征 函數(shù)性質(zhì)函數(shù)圖象都在y軸右側(cè) 函數(shù)的定義域?yàn)椋?,+∞)圖象關(guān)于原點(diǎn)和y軸不對稱 非奇非偶函數(shù)向y軸正負(fù)方向無限延伸 函數(shù)的值域?yàn)镽函數(shù)圖象都過定點(diǎn)(1,0)自左向右看,圖象逐漸上升 自左向右看,圖象逐漸下降 增函數(shù) 減函數(shù)第一象限的圖象縱坐標(biāo)都大于0 第一象限的圖象縱坐標(biāo)都大于0第二象限的圖象縱坐標(biāo)都小于0 第二象限的圖象縱坐標(biāo)都小于0(三)冪函數(shù)1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中 為常數(shù).2、冪函數(shù)性質(zhì)歸納.(1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過點(diǎn)(1,1);(2) 時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間 上是增函數(shù).特別地,當(dāng) 時(shí),冪函數(shù)的圖象下凸;當(dāng) 時(shí),冪函數(shù)的圖象上凸;(3) 時(shí),冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當(dāng) 從右邊趨向原點(diǎn)時(shí),圖象在 軸右方無限地逼近 軸正半軸,當(dāng) 趨于 時(shí),圖象在 軸上方無限地逼近 軸正半軸.第三章 函數(shù)的應(yīng)用一、方程的根與函數(shù)的零點(diǎn)1、函數(shù)零點(diǎn)的概念:對于函數(shù) ,把使 成立的實(shí)數(shù) 叫做函數(shù) 的零點(diǎn)。2、函數(shù)零點(diǎn)的意義:函數(shù) 的零點(diǎn)就是方程 實(shí)數(shù)根,亦即函數(shù) 的圖象與 軸交點(diǎn)的橫坐標(biāo)。即:方程 有實(shí)數(shù)根 函數(shù) 的圖象與 軸有交點(diǎn) 函數(shù) 有零點(diǎn).3、函數(shù)零點(diǎn)的求法:求函數(shù) 的零點(diǎn):1 (代數(shù)法)求方程 的實(shí)數(shù)根;2 (幾何法)對于不能用求根公式的方程,可以將它與函數(shù) 的圖象聯(lián)系起來,并利用函數(shù)的性
集合,交集,補(bǔ)集,并集,函數(shù),對數(shù),指數(shù),冪函數(shù),二次函數(shù),定義域,值域,奇偶性,單調(diào)性,解析式 有不會(huì)的可以問我
同意樓上!
文章TAG:高一數(shù)學(xué)必修高一數(shù)學(xué)必修一

最近更新

相關(guān)文章

主站蜘蛛池模板: 徐州市| 霍邱县| 临夏市| 信阳市| 浪卡子县| 朝阳县| 会同县| 元阳县| 贵南县| 呼图壁县| 资兴市| 金寨县| 霍城县| 渝中区| 汝阳县| 买车| 扬中市| 修水县| 阳春市| 抚顺市| 绥芬河市| 南江县| 迁西县| 遂昌县| 安义县| 余庆县| 辽宁省| 南乐县| 全椒县| 黄浦区| 耿马| 宝鸡市| 斗六市| 南江县| 玉环县| 满洲里市| 宁武县| 永仁县| 锡林浩特市| 儋州市| 交口县|