色天下一区二区三区,少妇精品久久久一区二区三区,中文字幕日韩高清,91精品国产91久久久久久最新毛片

首頁 > 寧夏 > 固原市 > 高一數學必修一知識點總結,高一數學必修一知識點總結

高一數學必修一知識點總結,高一數學必修一知識點總結

來源:整理 時間:2023-02-24 11:34:16 編輯:好學習 手機版

本文目錄一覽

1,高一數學必修一知識點總結

高一數學必修1第一章知識點總結一、集合有關概念1. 集合的含義2. 集合的中元素的三個特性:(1) 元素的確定性,(2) 元素的互異性,(3) 元素的無序性, 3.集合的表示:(1) 用拉丁字母表示集合:A=(2) 集合的表示方法:列舉法與描述法。? 注意:常用數集及其記法:非負整數集(即自然數集) 記作:N正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R1) 列舉法:2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。3) 語言描述法:例:4) Venn圖:4、集合的分類:(1) 有限集 含有有限個元素的集合(2) 無限集 含有無限個元素的集合(3) 空集 不含任何元素的集合 例:二、集合間的基本關系1.“包含”關系—子集注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2.“相等”關系:A=B (5≥5,且5≤5,則5=5)實例:設 A=即:① 任何一個集合是它本身的子集。A?A②真子集:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)③如果 A?B, B?C ,那么 A?C④ 如果A?B 同時 B?A 那么A=B3. 不含任何元素的集合叫做空集,記為Φ規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。? 有n個元素的集合,含有2n個子集,2n-1個真子集三、集合的運算運算類型 交 集 并 集 補 集定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作A交B),即A B={x|x A,且x B}.由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:A B(讀作A并B),即A B =設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作 ,即CSA= 韋恩圖示 性 質 A A=A A Φ=ΦA B=B AA B A A B BA A=AA Φ=AA B=B AA B AA B B(CuA) (CuB)= Cu (A B)(CuA) (CuB)= Cu(A B)A (CuA)=UA (CuA)= Φ.例題:1.下列四組對象,能構成集合的是 ( )A某班所有高個子的學生 B著名的藝術家 C一切很大的書 D 倒數等于它自身的實數2.集合3.若集合M=4.設集合A= ,B= ,若A B,則 的取值范圍是 5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人,兩種實驗都做錯得有4人,則這兩種實驗都做對的有 人。6. 用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M= .7.已知集合A=二、函數的有關概念1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合注意:1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零; (2)偶次方根的被開方數不小于零; (3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零, (7)實際問題中的函數的定義域還要保證實際問題有意義.? 相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);②定義域一致 (兩點必須同時具備)(見課本21頁相關例2)2.值域 : 先考慮其定義域(1)觀察法 (2)配方法(3)代換法3. 函數圖象知識歸納(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . (2) 畫法A、 描點法:B、 圖象變換法常用變換方法有三種1) 平移變換2) 伸縮變換3) 對稱變換4.區間的概念(1)區間的分類:開區間、閉區間、半開半閉區間(2)無窮區間(3)區間的數軸表示.5.映射一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作f:A→B6.分段函數 (1)在定義域的不同部分上有不同的解析表達式的函數。(2)各部分的自變量的取值情況.(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.補充:復合函數如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。 二.函數的性質1.函數的單調性(局部性質)(1)增函數設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1如果對于區間D上的任意兩個自變量的值x1,x2,當x1注意:函數的單調性是函數的局部性質; (2) 圖象的特點 如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的. (3).函數單調區間與單調性的判定方法 (A) 定義法: ○1 任取x1,x2∈D,且x1 ○2 作差f(x1)-f(x2); ○3 變形(通常是因式分解和配方); ○4 定號(即判斷差f(x1)-f(x2)的正負); ○5 下結論(指出函數f(x)在給定的區間D上的單調性). (B)圖象法(從圖象上看升降) (C)復合函數的單調性 復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減” 注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集. 8.函數的奇偶性(整體性質) (1)偶函數 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數. (2).奇函數 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數. (3)具有奇偶性的函數的圖象的特征 偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱. 利用定義判斷函數奇偶性的步驟: ○1首先確定函數的定義域,并判斷其是否關于原點對稱; ○2確定f(-x)與f(x)的關系; ○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數. (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數的圖象判定 . 9、函數的解析表達式 (1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域. (2)求函數的解析式的主要方法有: 1) 湊配法 2) 待定系數法 3) 換元法 4) 消參法 10.函數最大(?。┲担ǘx見課本p36頁) ○1 利用二次函數的性質(配方法)求函數的最大(?。┲?○2 利用圖象求函數的最大(小)值 ○3 利用函數單調性的判斷函數的最大(小)值: 如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b); 如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b); 例題: 1.求下列函數的定義域: ⑴ ⑵ 2.設函數 的定義域為 ,則函數 的定義域為_ _ 3.若函數 的定義域為 ,則函數 的定義域是 4.函數 ,若 ,則 = 6.已知函數 ,求函數 , 的解析式 7.已知函數 滿足 ,則 = 。 8.設 是R上的奇函數,且當 時, ,則當 時 = 在R上的解析式為 9.求下列函數的單調區間: ⑴ (2) 10.判斷函數 的單調性并證明你的結論. 11.設函數 判斷它的奇偶性并且求證: .
我沒有細說,都是大概。想來樓主關于書上的基礎都能在筆記或書上找到,不明白的在問我我在細說!呵呵!1、集合與函數(集合的概念、集合元素的三個特征、集合的分類、子集的概念、子集的性質、有限集合的子集個數、關于集合的運算:注意交集或并集中“或”“且”的意思,“或”兩者皆可的意思“且”是兩者都有的意思、交集與并集的有關性質、全集與補集的性質、函數的定義、三要素、函數的定義域、函數的值域、函數的單調性、單調區間、奇偶性以及奇偶性的特點) 2、3章說名稱你也不能太明白,知識點太零碎了,我想想怎么弄 在跟你說!呵呵!
沒有
http://read.baidu.com/view/1dc8306b011ca300a6c390f8.html
第一章 集合與函數概念一、集合有關概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。 2、集合的中元素的三個特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性 說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。 (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。 (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。 (4)集合元素的三個特性使集合本身具有了確定性和整體性。 3、集合的表示:非負整數集(即自然數集) 記作:n 正整數集 n*或 n+ 整數集z 有理數集q 實數集r 關于“屬于”的概念 集合的元素通常用小寫的拉丁字母表示,如:a是集合a的元素,就說a屬于集合a 記作 a∈a ,相反,a不屬于集合a 記作 a a 列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。 ①語言描述法:例:②數學式子描述法:例:不等式x-3>2的解集是1.有限集 含有有限個元素的集合 2.無限集 含有無限個元素的集合 3.空集 不含任何元素的集合 例:注意:ba?有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。 反之: 集合a不包含于集合b,或集合b不包含集合a,記作a??b或b??a 2.“相等”關系(5≥5,且5≤5,則5=5)實例:設 a=結論:對于兩個集合a與b,如果集合a的任何一個元素都是集合b的元素,同時,集合b的任何一個元素都是集合a的元素,我們就說集合a等于集合b,即:a=b ① 任何一個集合是它本身的子集。a a ②真子集:如果a b,且a b那就說集合a是集合b的真子集,記作ab(或ba) ③如果 a b, b c ,那么 a c ④ 如果a b 同時 b a 那么a=b 3. 不含任何元素的集合叫做空集,記為φ 規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的運算 1.交集的定義:一般地,由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集. 記作a∩b(讀作"a交b"),即a∩b=2、并集的定義:一般地,由所有屬于集合a或屬于集合b的元素所組成的集合,叫做a,b的并集。記作:a∪b(讀作"a并b"),即a∪b=4、全集與補集 (1)補集:設s是一個集合,a是s的一個子集(即sa?),由s中所有不屬于a的元素組成的集合,叫做s中子集a的補集(或余集) 記作: csa 即 csa =(2)全集:如果集合s含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用u來表示。 (3)性質:⑴cu(c ua)=a ⑵(c ua)∩a=φ ⑶(cua)∪a=u 二、函數的有關概念 1.函數的概念:設a、b是非空的數集,如果按照某個確定的對應關系f,使對于集合a中的任意一個數x,在集合b中都有唯一確定的數f(x)和它對應,那么就稱f:a→b為從集合a到集合b的一個函數.記作: y=f(x),x∈a.其中,x叫做自變量,x的取值范圍a叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零; (2)偶次方根的被開方數不小于零; (3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零 (7)實際問題中的函數的定義域還要保證實際問題有意義. (注意:求出不等式組的解集即為函數的定義域。) 構成函數的三要素:定義域、對應關系和值域 再注意:(1)構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)值域補充 (1)、函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。 3. 函數圖象知識歸納 (1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈a)中的x為橫坐標,函數值y為縱坐標的點p(x,y)的集合c,叫做函數 y=f(x),(x ∈a)的圖象. c上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在c上 . 即記為c=圖象c一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與y軸的直線最多只有一個交點的若干條曲線或離散點組成。 (2) 畫法 a、描點法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點p(x, y),最后用平滑的曲線將這些點連接起來. b、圖象變換法(請參考必修4三角函數) 常用變換方法有三種,即平移變換、伸縮變換和對稱變換 (3)作用: 1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。 3.解區間的概念 (1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示. 4.映射 一般地,設a、b是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合a中的任意一個元素x,在集合b中都有唯一確定的元素y與之對應,那么就稱對應f:a?b為從集合a到集合b的一個映射。記作“f:a?b” 給定一個集合a到b的映射,如果a∈a,b∈b.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象 說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合a、b及對應法則f是確定的;②對應法則有“方向性”,即強調從集合a到集合b的對應,它與從b到a的對應關系一般是不同的;③對于映射f:a→b來說,則應滿足:(?。┘蟖中的每一個元素,在集合b中都有象,并且象是唯一的;(ⅱ)集合a中不同的元素,在集合b中對應的象。

高一數學必修一知識點總結

2,高一數學必修1知識點歸納有哪些

高一數學必修1知識點如下:1、無限集含有無限個元素的集合。2、有限集含有有限個元素的集合。3、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。4、在多個單調區間之間不能用“或”和“”連接,只能用逗號隔開。5、如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合。

高一數學必修1知識點歸納有哪些

3,求高中數學必修1的知識點總結 急

1. 集合 ?。s4課時)  (1)集合的含義與表示 ?、偻ㄟ^實例,了解集合的含義,體會元素與集合的“屬于”關系?! 、谀苓x擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。  (2)集合間的基本關系 ?、倮斫饧现g包含與相等的含義,能識別給定集合的子集?! 、谠诰唧w情境中,了解全集與空集的含義。 ?。?)集合的基本運算 ?、倮斫鈨蓚€集合的并集與交集的含義,會求兩個簡單集合的并集與交集?! 、诶斫庠诮o定集合中一個子集的補集的含義,會求給定子集的補集?! 、勰苁褂肰enn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。2. 函數概念與基本初等函數I ?。s32課時) ?。?)函數  ①進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念?! 、谠趯嶋H情境中,會根據不同的需要選擇恰當的方法(如圖象法、列表法、解析法)表示函數?! 、哿私夂唵蔚姆侄魏瘮?,并能簡單應用。 ?、芡ㄟ^已學過的函數特別是二次函數,理解函數的單調性、最大(?。┲导捌鋷缀我饬x;結合具體函數,了解奇偶性的含義。 ?、輰W會運用函數圖象理解和研究函數的性質(參見例1)?! 。?)指數函數 ?、伲毎姆至?,考古中所用的C的衰減,藥物在人體內殘留量的變化等),了解指數函數模型的實際背景。 ?、诶斫庥欣碇笖祪绲暮x,通過具體實例了解實數指數冪的意義,掌握冪的運算?! 、劾斫庵笖岛瘮档母拍詈鸵饬x,能借助計算器或計算機畫出具體指數函數的圖象,探索并理解指數函數的單調性與特殊點。  ④在解決簡單實際問題的過程中,體會指數函數是一類重要的函數模型(參見例2)。  (3)對數函數  ①理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的產生歷史以及對簡化運算的作用。 ?、谕ㄟ^具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;能借助計算器或計算機畫出具體對數函數的圖象,探索并了解對數函數的單調性與特殊點。 ?、壑乐笖岛瘮?與對數函數 互為反函數(a>0,a≠1)?! 。?)冪函數  通過實例,了解冪函數的概念;結合函數 的圖象,了解它們的變化情況。 ?。?)函數與方程 ?、俳Y合二次函數的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函數的零點與方程根的聯系。  ②根據具體函數的圖象,能夠借助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法?! 。?)函數模型及其應用 ?、倮糜嬎愎ぞ?,比較指數函數、對數函數以及冪函數增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義。 ?、谑占恍┥鐣?a href="/tag/490.html" target="_blank" class="infotextkey">生活中普遍使用的函數模型(指數函數、對數函數、冪函數、分段函數等)的實例,了解函數模型的廣泛應用。 ?。?)實習作業  根據某個主題,收集17世紀前后發生的一些對數學發展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關資料或現實生活中的函數實例,采取小組合作的方式寫一篇有關函數概念的形成、發展或應用的文章,在班級中進行交流。具體要求參見數學文化的要求。
1. 集合 ?。s4課時) ?。?)集合的含義與表示 ?、偻ㄟ^實例,了解集合的含義,體會元素與集合的“屬于”關系?! 、谀苓x擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用?! 。?)集合間的基本關系  ①理解集合之間包含與相等的含義,能識別給定集合的子集?! 、谠诰唧w情境中,了解全集與空集的含義。 ?。?)集合的基本運算 ?、倮斫鈨蓚€集合的并集與交集的含義,會求兩個簡單集合的并集與交集?! 、诶斫庠诮o定集合中一個子集的補集的含義,會求給定子集的補集。 ?、勰苁褂肰enn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。
高中高一數學必修1各章知識點總結第一章 集合與函數e5a48de588b6e799bee5baa6e79fa5e9819331333330363138概念一、集合有關概念1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。2、集合的中元素的三個特性:1.元素的確定性; 2.元素的互異性; 3.元素的無序性說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。(4)集合元素的三個特性使集合本身具有了確定性和整體性。3、集合的表示:1. 用拉丁字母表示集合:A=2.集合的表示方法:列舉法與描述法。注意?。撼S脭导捌溆浄ǎ悍秦撜麛导醋匀粩导┯涀鳎篘正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R關于“屬于”的概念集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 a∈A ,相反,a不屬于集合A 記作 a?A列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。①語言描述法:例:②數學式子描述法:例:不等式x-3>2的解集是4、集合的分類:1.有限集 含有有限個元素的集合2.無限集 含有無限個元素的集合3.空集 不含任何元素的集合 例:二、集合間的基本關系1.“包含”關系—子集注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2.“相等”關系(5≥5,且5≤5,則5=5)實例:設 A=結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B① 任何一個集合是它本身的子集。AíA②真子集:如果AíB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)③如果 AíB, BíC ,那么 AíC④ 如果AíB 同時 BíA 那么A=B3. 不含任何元素的集合叫做空集,記為Φ規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的運算1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A∩B(讀作”A交B”),即A∩B=2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B=3、交集與并集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集與補集(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作: CSA 即 CSA =SCsAA(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U二、函數的有關概念1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合注意:2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;3 函數的定義域、值域要寫成集合或區間的形式.定義域補充能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零; (2)偶次方根的被開方數不小于零; (3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零 (6)實際問題中的函數的定義域還要保證實際問題有意義.(又注意:求出不等式組的解集即為函數的定義域。)構成函數的三要素:定義域、對應關系和值域再注意:(1)構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)(見課本21頁相關例2)值域補充(1)、函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。3. 函數圖象知識歸納(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . 即記為C=圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。(2) 畫法A、描點法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點P(x, y),最后用平滑的曲線將這些點連接起來.B、圖象變換法(請參考必修4三角函數)常用變換方法有三種,即平移變換、伸縮變換和對稱變換(3)作用:1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。發現解題中的錯誤。4.快去了解區間的概念(1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.5.什么叫做映射一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作“f:A B”給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有“方向性”,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對于映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。常用的函數表示法及各自的優點:1 函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;2 解析法:必須注明函數的定義域;3 圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特征;4 列表法:選取的自變量要有代表性,應能反映定義域的特征.注意?。航馕龇ǎ罕阌谒愠龊瘮抵?。列表法:便于查出函數值。圖象法:便于量出函數值補充一:分段函數 (參見課本P24-25)在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時必須把自變量代入相應的表達式。分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式并用一個左大括號括起來,并分別注明各部分的自變量的取值情況.(1)分段函數是一個函數,不要把它誤認為是幾個函數;(2)分段函數的定義域是各段定義域的并集,值域是各段值域的并集.補充二:復合函數如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復合函數。例如: y=2sinX y=2cos(X2+1)7.函數單調性(1).增函數設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1<x2時,都有f(x1)<f(x2),那么就說f(x)在區間D上是增函數。區間D稱為y=f(x)的單調增區間(睇清楚課本單調區間的概念)如果對于區間D上的任意兩個自變量的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那么就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.注意:1 函數的單調性是在定義域內的某個區間上的性質,是函數的局部性質;2 必須是對于區間D內的任意兩個自變量x1,x2;當x1<x2時,總有f(x1)<f(x2) 。(2) 圖象的特點如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.(3).函數單調區間與單調性的判定方法(A) 定義法:1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 變形(通常是因式分解和配方);4 定號(即判斷差f(x1)-f(x2)的正負);5 下結論(指出函數f(x)在給定的區間D上的單調性).(B)圖象法(從圖象上看升降)_(C)復合函數的單調性復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律如下:函數 單調性u=g(x) 增 增 減 減y=f(u) 增 減 增 減y=f[g(x)] 增 減 減 增注意:1、函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集. 2、還記得我們在選修里學習簡單易行的導數法判定單調性嗎?8.函數的奇偶性(1)偶函數一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.(2).奇函數一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.注意:1 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。2 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).(3)具有奇偶性的函數的圖象的特征偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.總結:利用定義判斷函數奇偶性的格式步驟:1 首先確定函數的定義域,并判斷其定義域是否關于原點對稱;2 確定f(-x)與f(x)的關系;3 作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.注意啊:函數定義域關于原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)有時判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數的圖象判定 .9、函數的解析表達式(1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.(2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)10.函數最大(小)值(定義見課本p36頁)1 利用二次函數的性質(配方法)求函數的最大(?。┲? 利用圖象求函數的最大(?。┲? 利用函數單調性的判斷函數的最大(?。┲担喝绻瘮祔=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);第二章 基本初等函數一、指數函數(一)指數與指數冪的運算1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *.當 是奇數時,正數的 次方根是一個正數,負數的 次方根是一個負數.此時, 的 次方根用符號 表示.式子 叫做根式(radical),這里 叫做根指數(radical exponent), 叫做被開方數(radicand).當 是偶數時,正數的 次方根有兩個,這兩個數互為相反數.此時,正數 的正的 次方根用符號 表示,負的 次方根用符號- 表示.正的 次方根與負的 次方根可以合并成± ( >0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作 。注意:當 是奇數時, ,當 是偶數時, 2.分數指數冪正數的分數指數冪的意義,規定:, 0的正分數指數冪等于0,0的負分數指數冪沒有意義指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.3.實數指數冪的運算性質(1) · ;(2) ;(3) .(二)指數函數及其性質1、指數函數的概念:一般地,函數 叫做指數函數(exponential ),其中x是自變量,函數的定義域為R.注意:指數函數的底數的取值范圍,底數不能是負數、零和1.2、指數函數的圖象和性質a>1 0<a<1圖象特征 函數性質向x、y軸正負方向無限延伸 函數的定義域為R圖象關于原點和y軸不對稱 非奇非偶函數函數圖象都在x軸上方 函數的值域為R+函數圖象都過定點(0,1)自左向右看,圖象逐漸上升 自左向右看,圖象逐漸下降 增函數 減函數在第一象限內的圖象縱坐標都大于1 在第一象限內的圖象縱坐標都小于1在第二象限內的圖象縱坐標都小于1 在第二象限內的圖象縱坐標都大于1圖象上升趨勢是越來越陡 圖象上升趨勢是越來越緩 函數值開始增長較慢,到了某一值后增長速度極快; 函數值開始減小極快,到了某一值后減小速度較慢;注意:利用函數的單調性,結合圖象還可以看出:(1)在[a,b]上, 值域是 或 ;(2)若 ,則 ; 取遍所有正數當且僅當 ;(3)對于指數函數 ,總有 ;(4)當 時,若 ,則 ;二、對數函數(一)對數1.對數的概念:一般地,如果 ,那么數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)說明:1 注意底數的限制 ,且 ;2 ;3 注意對數的書寫格式.兩個重要對數:1 常用對數:以10為底的對數 ;2 自然對數:以無理數 為底的對數的對數 .對數式與指數式的互化對數式 指數式對數底數 ← → 冪底數對數 ← → 指數真數 ← → 冪(二)對數的運算性質如果 ,且 , , ,那么:1 · + ;2 - ;3 .注意:換底公式 ( ,且 ; ,且 ; ).利用換底公式推導下面的結論(1) ;(2) .(二)對數函數1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變量,函數的定義域是(0,+∞).注意:1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。如: , 都不是對數函數,而只能稱其為對數型函數.2 對數函數對底數的限制: ,且 .2、對數函數的性質:a>1 0<a<1圖象特征 函數性質函數圖象都在y軸右側 函數的定義域為(0,+∞)圖象關于原點和y軸不對稱 非奇非偶函數向y軸正負方向無限延伸 函數的值域為R函數圖象都過定點(1,0)自左向右看,圖象逐漸上升 自左向右看,圖象逐漸下降 增函數 減函數第一象限的圖象縱坐標都大于0 第一象限的圖象縱坐標都大于0第二象限的圖象縱坐標都小于0 第二象限的圖象縱坐標都小于0(三)冪函數1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.2、冪函數性質歸納.(1)所有的冪函數在(0,+∞)都有定義,并且圖象都過點(1,1);(2) 時,冪函數的圖象通過原點,并且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨于 時,圖象在 軸上方無限地逼近 軸正半軸.第三章 函數的應用一、方程的根與函數的零點1、函數零點的概念:對于函數 ,把使 成立的實數 叫做函數 的零點。2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。即:方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.3、函數零點的求法:求函數 的零點:1 (代數法)求方程 的實數根;2 (幾何法)對于不能用求根公式的方程,可以將它與函數 的圖象聯系起來,并利用函數的性質找出零點.4、二次函數的零點:二次函數 .1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點

求高中數學必修1的知識點總結 急

文章TAG:高一數學必修一知識點總結高一數學必修

最近更新

  • 退伍圖片,退伍軍人

    擴展內容:退伍士兵(英文:退伍軍人),指在常備役或預備役服役后離開軍隊,恢復一般公民身份,走向社會工作的人,退伍永不褪色,永遠做祖國的戰士,青春在軍營揮灑汗水,退伍創業精英,195 ......

    固原市 日期:2023-05-06

  • 金魚的英文,金魚用英語怎么讀

    金魚用英語怎么讀2,金魚英文怎么讀1,金魚用英語怎么讀goldfish2,金魚英文怎么讀金魚單詞是goldfish,讀音為:英[?g??ldf??]美[?go?ldf??]。gol ......

    固原市 日期:2023-05-05

  • 酗酒的危害,酗酒有什么危害

    酗酒有什么危害容易損傷胃,損傷大腦系統,等。2,酗酒有哪些危害1.傷肝,腎2.傷胃3.酒精中毒4.精神失控,后果就很嚴重了5.誘發其他疾病,如心腦血管疾病6.導致其他微量元素的缺乏 ......

    固原市 日期:2023-05-05

  • 梅田,廣東省有個叫梅田的地方在哪個市

    廣東省有個叫梅田的地方在哪個市廣東有兩個梅田,不知道你說的是哪個;?一個在廣東省汕尾市陸豐市.另一個在廣東省清遠市連州市.我也是梅田的,七礦知道嗎,你們六礦的大部分集中在廣州,中山 ......

    固原市 日期:2023-05-05

  • 拉拉隊口號,跪求拉拉隊經典口號

    跪求拉拉隊經典口號首先:短促有力。其次:節奏緊密還有:有利于大家同時發力最后:千萬別喊“3”,1、2就足夠用了,喊了3隊員會有一種有勁使不上的感覺了。欲祝:獨拔頭躊,力挽狂瀾加油加 ......

    固原市 日期:2023-05-05

  • 涇渭分明什么意思,涇渭分明同義詞:清晰明了

    他自律很嚴,一直經手公款私款涇渭分明,從不公私分明,擴展數據涇渭分明1的同義詞,”:主謂類型;作主語、謂語、賓語和定語;贊美:清晰明了,黑白分明:無法分辨,無法分辨,黑白分明涇渭分 ......

    固原市 日期:2023-05-05

  • 案例分析報告,事例分析報告

    事例分析報告2,法律案例分析范文1500字左右1,事例分析報告肯定錯了,不歸你管,歸誰管啊?得說出個道道啊,要不人家還是不懂啊客戶就是上帝.不管是不是你部門管的.都應該微笑回答.當 ......

    固原市 日期:2023-05-05

  • 沙姜雞,沙姜雞雞肉切小塊放入砂鍋中小火煨20分鐘

    提前將雞清洗干凈,燉鍋放些水,將雞爪和雞頭放入肚中,將姜片、高良姜、大蔥放入鍋中,小火煮開后小火煨40分鐘左右,取出雞肉用廚房紙巾吸干雞肉表面的水,鍋中放油,放入高良姜,炒香洋蔥, ......

    固原市 日期:2023-05-05

主站蜘蛛池模板: 盐津县| 白银市| 甘泉县| 昭平县| 平利县| 梁河县| 邵东县| 彭水| 金溪县| 揭东县| 安塞县| 本溪| 中江县| 紫金县| 象山县| 乌兰浩特市| 稷山县| 彭泽县| 栖霞市| 柳州市| 上林县| 安西县| 荥经县| 孟州市| 大厂| 化德县| 日土县| 海南省| 宁波市| 台中县| 富阳市| 含山县| 册亨县| 玉龙| 安溪县| 长顺县| 林芝县| 仁化县| 原阳县| 翼城县| 徐水县|