色天下一区二区三区,少妇精品久久久一区二区三区,中文字幕日韩高清,91精品国产91久久久久久最新毛片

首頁 > 河北 > 邯鄲市 > 高中數學必修一,高一數學必修一的知識點

高中數學必修一,高一數學必修一的知識點

來源:整理 時間:2023-03-12 02:02:32 編輯:好學習 手機版

1,高一數學必修一的知識點

人教板的必修1數學:第一章:集合與函數概念 第二章:基本初等函數 第三章:函數的應用 如果你是人教板的 ,一學期要學2本數學的,可能另一本是必修4

高一數學必修一的知識點

2,高一數學必修1

2.3
3
③,x=3k-2----------x=3(k-1)+1--------x/3=(k-1)....1
3
第一個是錯的。X=3K ,那么X是3的整數倍了,沒余數 。 另外,你題上的 “被3除余1的證書” 是指的整數吧(指正數3個就全錯了) 。 那么其實第二個和第三個是相同的 ,都正確。 (-5÷3=-2....1 , 1÷3=0....1)

高一數學必修1

3,高中數學必修1

a=1,b=1,c=0 由該函數為奇函數可知c=0,由f(1)=2得a+1=2b,由f(2)<3得4a+1<6b,經整理得b<1.5,a<2,因為a,b為整數,所以a取1,b取1.
這個答案,可以很肯定地告訴你,你老師有。就看你有沒有膽量去找你老師要。你呀,作業還是自己做。暑假2個月,那么一點作業都做不完?哎!我們中國的下一代就這樣啊。你以后該怎么辦啊。無言!!!
這道題都是我的作業, 我都沒有做起, 我只求出C=0,就不知道咯,因為是奇函數,F(0)=1/C=0 C=0

高中數學必修1

4,高一必修一數學知識點

高一數學必修1各章知識點總結 第一章 集合與函數概念 一、集合有關概念 1. 集合的含義 2. 集合的中元素的三個特性: (1) 元素的確定性如:世界上最高的山 (2) 元素的互異性如:由HAPPY的字母組成的集合 (3) 元素的無序性: 如: 3.集合的表示: (1) 用拉丁字母表示集合:A= (2) 集合的表示方法:列舉法與描述法。 u 注意:常用數集及其記法: 非負整數集(即自然數集) 記作:N 正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R 1) 列舉法: 2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。 3) 語言描述法:例: 4) Venn圖: 4、集合的分類: (1) 有限集 含有有限個元素的集合 (2) 無限集 含有無限個元素的集合 (3) 空集 不含任何元素的集合  例: 二、集合間的基本關系 1.“包含”關系—子集 注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A 2.“相等”關系:A=B (5≥5,且5≤5,則5=5) 實例:設 A= 即:① 任何一個集合是它本身的子集。AíA ②真子集:如果AíB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A) ③如果 AíB, BíC ,那么 AíC ④ 如果AíB 同時 BíA 那么A=B 3. 不含任何元素的集合叫做空集,記為Φ 規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 u 有n個元素的集合,含有2n個子集,2n-1個真子集 三、集合的運算 運算類型 交 集 并 集 補 集 定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作A交B),即A B={x|x A,且x B}. 由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:A B(讀作A并B),即A B =例題: 1.下列四組對象,能構成集合的是 ( ) A某班所有高個子的學生 B著名的藝術家 C一切很大的書 D 倒數等于它自身的實數 2.集合 3.若集合M= 4.設集合A= ,B= ,若A B,則 的取值范圍是 5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人, 兩種實驗都做錯得有4人,則這兩種實驗都做對的有 人。 6. 用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M= . 7.已知集合A= 二、函數的有關概念 1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合 注意: 1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。 求函數的定義域時列不等式組的主要依據是: (1)分式的分母不等于零; (2)偶次方根的被開方數不小于零; (3)對數式的真數必須大于零; (4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合. (6)指數為零底不可以等于零, (7)實際問題中的函數的定義域還要保證實際問題有意義. u 相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);②定義域一致 (兩點必須同時具備) (見課本21頁相關例2) 2.值域 : 先考慮其定義域 (1)觀察法 (2)配方法 (3)代換法 3. 函數圖象知識歸納 (1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . (2) 畫法 A、 描點法: B、 圖象變換法 常用變換方法有三種 1) 平移變換 2) 伸縮變換 3) 對稱變換 4.區間的概念 (1)區間的分類:開區間、閉區間、半開半閉區間 (2)無窮區間 (3)區間的數軸表示. 5.映射 一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作“f(對應關系):A(原象) B(象)” 對于映射f:A→B來說,則應滿足: (1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的; (2)集合A中不同的元素,在集合B中對應的象可以是同一個; (3)不要求集合B中的每一個元素在集合A中都有原象。 6.分段函數 (1)在定義域的不同部分上有不同的解析表達式的函數。 (2)各部分的自變量的取值情況. (3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集. 補充:復合函數 如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。 二.函數的性質 1.函數的單調性(局部性質) (1)增函數 設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1<x2時,都有f(x1)<f(x2),那么就說f(x)在區間D上是增函數.區間D稱為y=f(x)的單調增區間. 如果對于區間D上的任意兩個自變量的值x1,x2,當x1<x2時,都有f(x1)>f(x2),那么就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間. 注意:函數的單調性是函數的局部性質; (2) 圖象的特點 如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的. (3).函數單調區間與單調性的判定方法 (A) 定義法: 1 任取x1,x2∈D,且x1<x2; 2 作差f(x1)-f(x2); 3 變形(通常是因式分解和配方); 4 定號(即判斷差f(x1)-f(x2)的正負); 5 下結論(指出函數f(x)在給定的區間D上的單調性). (B)圖象法(從圖象上看升降) (C)復合函數的單調性 復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減” 注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集. 8.函數的奇偶性(整體性質) (1)偶函數 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數. (2).奇函數 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數. (3)具有奇偶性的函數的圖象的特征 偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱. 利用定義判斷函數奇偶性的步驟: 1首先確定函數的定義域,并判斷其是否關于原點對稱; 2確定f(-x)與f(x)的關系; 3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數. 注意:函數定義域關于原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數的圖象判定 . 9、函數的解析表達式 (1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域. (2)求函數的解析式的主要方法有: 1) 湊配法 2) 待定系數法 3) 換元法 4) 消參法 10.函數最大(小)值(定義見課本p36頁) 1 利用二次函數的性質(配方法)求函數的最大(小)值 2 利用圖象求函數的最大(小)值 3 利用函數單調性的判斷函數的最大(小)值: 如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b); 如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b); 例題: 1.求下列函數的定義域: ⑴ ⑵ 2.設函數 的定義域為 ,則函數 的定義域為_ _ 3.若函數 的定義域為 ,則函數 的定義域是 4.函數 ,若 ,則 = 5.求下列函數的值域: ⑴ ⑵ (3) (4) 6.已知函數 ,求函數 , 的解析式 7.已知函數 滿足 ,則 = 。 8.設 是R上的奇函數,且當 時, ,則當 時 = 在R上的解析式為 9.求下列函數的單調區間: ⑴ ⑵ ⑶ 10.判斷函數 的單調性并證明你的結論. 11.設函數 判斷它的奇偶性并且求證: . 第二章 基本初等函數 一、指數函數 (一)指數與指數冪的運算 1.根式的概念:一般地,如果 ,那么 叫做 的 次方根,其中 >1,且 ∈ *. u 負數沒有偶次方根;0的任何次方根都是0,記作 。 當 是奇數時, ,當 是偶數時, 2.分數指數冪 正數的分數指數冪的意義,規定: , u 0的正分數指數冪等于0,0的負分數指數冪沒有意義 3.實數指數冪的運算性質 (1) · ; (2) ; (3) . (二)指數函數及其性質 1、指數函數的概念:一般地,函數 叫做指數函數,其中x是自變量,函數的定義域為R. 注意:指數函數的底數的取值范圍,底數不能是負數、零和1. 2、指數函數的圖象和性質 a>1 0<1 定義域 R 定義域 R 值域y>0 值域y>0 在R上單調遞增 在R上單調遞減 非奇非偶函數 非奇非偶函數 函數圖象都過定點(0,1) 函數圖象都過定點(0,1) 注意:利用函數的單調性,結合圖象還可以看出:(1)在[a,b]上, 值域是 或 ;(2)若 ,則 ; 取遍所有正數當且僅當 ;(3)對于指數函數 ,總有 ; 二、對數函數 (一)對數 1.對數的概念:一般地,如果 ,那么數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式) 說明:1 注意底數的限制 ,且 ; 2 ; 3 注意對數的書寫格式. 兩個重要對數: 1 常用對數:以10為底的對數 ; 2 自然對數:以無理數 為底的對數的對數 . u 指數式與對數式的互化 冪值 真數 = N = b 底數 指數 對數 (二)對數的運算性質 如果 ,且 , , ,那么: 1 · + ; 2 - ; 3 . 注意:換底公式 ( ,且 ; ,且 ; ). 利用換底公式推導下面的結論 (1) ;(2) . (二)對數函數 1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變量,函數的定義域是(0,+∞). 注意:1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。如: , 都不是對數函數,而只能稱其為對數型函數. 2 對數函數對底數的限制: ,且 . 2、對數函數的性質: a>1 0<1 定義域x>0 定義域x>0 值域為R 值域為R 在R上遞增 在R上遞減 函數圖象都過定點(1,0) 函數圖象都過定點(1,0) (三)冪函數 1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數. 2、冪函數性質歸納. (1)所有的冪函數在(0,+∞)都有定義并且圖象都過點(1,1); (2) 時,冪函數的圖象通過原點,并且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸; (3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨于 時,圖象在 軸上方無限地逼近 軸正半軸. 例題: 1. 已知a>0,a0,函數y=ax與y=loga(-x)的圖象只能是       (  )         2.計算: ① ;② = ; = ; ③ = 3.函數y=log(2x2-3x+1)的遞減區間為 4.若函數 在區間 上的最大值是最小值的3倍,則a= 5.已知 ,(1)求 的定義域(2)求使 的 的取值范圍 第三章 函數的應用 一、方程的根與函數的零點 1、函數零點的概念:對于函數 ,把使 成立的實數 叫做函數 的零點。 2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。 即:方程 有實數根 函數 的圖象與 軸有交點 函數 有零點. 3、函數零點的求法: 1 (代數法)求方程 的實數根; 2 (幾何法)對于不能用求根公式的方程,可以將它與函數 的圖象聯系起來,并利用函數的性質找出零點. 4、二次函數的零點: 二次函數 . (1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點. (2)△=0,方程 有兩相等實根,二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點. (3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點. 5.函數的模型 檢驗 收集數據 畫散點圖 選擇函數模型 求函數模型 用函數模型解釋實際問題 符合實際 下載地址: http://www.yljxw.com/Soft/ShowSoft.asp?SoftID=9470

5,高一數學必修一知識點總結

第一章 集合與函數概念一、集合有關概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。 2、集合的中元素的三個特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性 說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。 (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。 (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。 (4)集合元素的三個特性使集合本身具有了確定性和整體性。 3、集合的表示:非負整數集(即自然數集) 記作:N 正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R 關于“屬于”的概念 集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 a∈A ,相反,a不屬于集合A 記作 a A 列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。 ①語言描述法:例:②數學式子描述法:例:不等式x-3>2的解集是1.有限集 含有有限個元素的集合 2.無限集 含有無限個元素的集合 3.空集 不含任何元素的集合 例:注意:BA?有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A??B或B??A 2.“相等”關系(5≥5,且5≤5,則5=5)實例:設 A=結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B ① 任何一個集合是它本身的子集。A A ②真子集:如果A B,且A B那就說集合A是集合B的真子集,記作AB(或BA) ③如果 A B, B C ,那么 A C ④ 如果A B 同時 B A 那么A=B 3. 不含任何元素的集合叫做空集,記為Φ 規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的運算 1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集. 記作A∩B(讀作"A交B"),即A∩B=2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作"A并B"),即A∪B=4、全集與補集 (1)補集:設S是一個集合,A是S的一個子集(即SA?),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集) 記作: CSA 即 CSA =(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。 (3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U 二、函數的有關概念 1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零; (2)偶次方根的被開方數不小于零; (3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零 (7)實際問題中的函數的定義域還要保證實際問題有意義. (注意:求出不等式組的解集即為函數的定義域。) 構成函數的三要素:定義域、對應關系和值域 再注意:(1)構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)值域補充 (1)、函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。 3. 函數圖象知識歸納 (1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象. C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . 即記為C=圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。 (2) 畫法 A、描點法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點P(x, y),最后用平滑的曲線將這些點連接起來. B、圖象變換法(請參考必修4三角函數) 常用變換方法有三種,即平移變換、伸縮變換和對稱變換 (3)作用: 1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。 3.解區間的概念 (1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示. 4.映射 一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A?B為從集合A到集合B的一個映射。記作“f:A?B” 給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象 說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有“方向性”,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對于映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象。
高中數學知識點總結(最全版)https://wenku.baidu.com/view/84cc00b88e9951e79a892788.html
高一數學必修1第一章知識點總結一、集合有關概念1. 集合的含義2. 集合的中元素的三個特性:(1) 元素的確定性,(2) 元素的互異性,(3) 元素的無序性, 3.集合的表示:(1) 用拉丁字母表示集合:a=(2) 集合的表示方法:列舉法與描述法。? 注意:常用數集及其記法:非負整數集(即自然數集) 記作:n正整數集 n*或 n+ 整數集z 有理數集q 實數集r1) 列舉法:2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。3) 語言描述法:例:4) venn圖:4、集合的分類:(1) 有限集 含有有限個元素的集合(2) 無限集 含有無限個元素的集合(3) 空集 不含任何元素的集合 例:二、集合間的基本關系1.“包含”關系—子集注意: 有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。反之: 集合a不包含于集合b,或集合b不包含集合a,記作a b或b a2.“相等”關系:a=b (5≥5,且5≤5,則5=5)實例:設 a=即:① 任何一個集合是它本身的子集。a?a②真子集:如果a?b,且a? b那就說集合a是集合b的真子集,記作a b(或b a)③如果 a?b, b?c ,那么 a?c④ 如果a?b 同時 b?a 那么a=b3. 不含任何元素的集合叫做空集,記為φ規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。? 有n個元素的集合,含有2n個子集,2n-1個真子集三、集合的運算運算類型 交 集 并 集 補 集定 義 由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集.記作a b(讀作a交b),即a b={x|x a,且x b}.由所有屬于集合a或屬于集合b的元素所組成的集合,叫做a,b的并集.記作:a b(讀作a并b),即a b =設s是一個集合,a是s的一個子集,由s中所有不屬于a的元素組成的集合,叫做s中子集a的補集(或余集)記作 ,即csa= 韋恩圖示 性 質 a a=a a φ=φa b=b aa b a a b ba a=aa φ=aa b=b aa b aa b b(cua) (cub)= cu (a b)(cua) (cub)= cu(a b)a (cua)=ua (cua)= φ.例題:1.下列四組對象,能構成集合的是 ( )a某班所有高個子的學生 b著名的藝術家 c一切很大的書 d 倒數等于它自身的實數2.集合3.若集合m=4.設集合a= ,b= ,若a b,則 的取值范圍是 5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人,兩種實驗都做錯得有4人,則這兩種實驗都做對的有 人。6. 用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合m= .7.已知集合a=二、函數的有關概念1.函數的概念:設a、b是非空的數集,如果按照某個確定的對應關系f,使對于集合a中的任意一個數x,在集合b中都有唯一確定的數f(x)和它對應,那么就稱f:a→b為從集合a到集合b的一個函數.記作: y=f(x),x∈a.其中,x叫做自變量,x的取值范圍a叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合注意:1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零; (2)偶次方根的被開方數不小于零; (3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零, (7)實際問題中的函數的定義域還要保證實際問題有意義.? 相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);②定義域一致 (兩點必須同時具備)(見課本21頁相關例2)2.值域 : 先考慮其定義域(1)觀察法 (2)配方法(3)代換法3. 函數圖象知識歸納(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈a)中的x為橫坐標,函數值y為縱坐標的點p(x,y)的集合c,叫做函數 y=f(x),(x ∈a)的圖象.c上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在c上 . (2) 畫法a、 描點法:b、 圖象變換法常用變換方法有三種1) 平移變換2) 伸縮變換3) 對稱變換4.區間的概念(1)區間的分類:開區間、閉區間、半開半閉區間(2)無窮區間(3)區間的數軸表示.5.映射一般地,設a、b是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合a中的任意一個元素x,在集合b中都有唯一確定的元素y與之對應,那么就稱對應f:a b為從集合a到集合b的一個映射。記作f:a→b6.分段函數 (1)在定義域的不同部分上有不同的解析表達式的函數。(2)各部分的自變量的取值情況.(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.補充:復合函數如果y=f(u)(u∈m),u=g(x)(x∈a),則 y=f[g(x)]=f(x)(x∈a) 稱為f、g的復合函數。 二.函數的性質1.函數的單調性(局部性質)(1)增函數設函數y=f(x)的定義域為i,如果對于定義域i內的某個區間d內的任意兩個自變量x1,x2,當x1如果對于區間d上的任意兩個自變量的值x1,x2,當x1注意:函數的單調性是函數的局部性質; (2) 圖象的特點 如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的. (3).函數單調區間與單調性的判定方法 (a) 定義法: ○1 任取x1,x2∈d,且x1 ○2 作差f(x1)-f(x2); ○3 變形(通常是因式分解和配方); ○4 定號(即判斷差f(x1)-f(x2)的正負); ○5 下結論(指出函數f(x)在給定的區間d上的單調性). (b)圖象法(從圖象上看升降) (c)復合函數的單調性 復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減” 注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集. 8.函數的奇偶性(整體性質) (1)偶函數 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數. (2).奇函數 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數. (3)具有奇偶性的函數的圖象的特征 偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱. 利用定義判斷函數奇偶性的步驟: ○1首先確定函數的定義域,并判斷其是否關于原點對稱; ○2確定f(-x)與f(x)的關系; ○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數. (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數的圖象判定 . 9、函數的解析表達式 (1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域. (2)求函數的解析式的主要方法有: 1) 湊配法 2) 待定系數法 3) 換元法 4) 消參法 10.函數最大(小)值(定義見課本p36頁) ○1 利用二次函數的性質(配方法)求函數的最大(小)值 ○2 利用圖象求函數的最大(小)值 ○3 利用函數單調性的判斷函數的最大(小)值: 如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b); 如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b); 例題: 1.求下列函數的定義域: ⑴ ⑵ 2.設函數 的定義域為 ,則函數 的定義域為_ _ 3.若函數 的定義域為 ,則函數 的定義域是 4.函數 ,若 ,則 = 6.已知函數 ,求函數 , 的解析式 7.已知函數 滿足 ,則 = 。 8.設 是r上的奇函數,且當 時, ,則當 時 = 在r上的解析式為 9.求下列函數的單調區間: ⑴ (2) 10.判斷函數 的單調性并證明你的結論. 11.設函數 判斷它的奇偶性并且求證: .
文章TAG:高中數學必修一高中高中數學數學

最近更新

  • 三價鐵離子的檢驗,fe3是怎么一回事?

    加入SCN-血紅色Fe33SCN-==Fe3(絡合反應是可逆的,兩種離子的結合比不唯一,是-2三價鐵的特征反應,而二價鐵不具有這種特征)并加入氫氧化鈉,其他陽離子離子一般內容不干擾 ......

    邯鄲市 日期:2023-05-06

  • 春風吻上我的臉,春風吻上我的臉的翻譯是什么意思

    春風吻上我的臉的翻譯是什么意思翻譯如下:春風吻上我的臉Thespringbreezekissesmyface開心和喜悅讓自己不勝感激涕零,想必,那春風還吻上了我的臉,這應該是夏天的 ......

    邯鄲市 日期:2023-05-06

  • 九月的詩句,描寫九月的詩詞

    本文目錄一覽1,描寫九月的詩詞2,關于9月詩句3,關于9月的詩句有哪些4,描寫九月的詩句5,關于九月九的古詩1,描寫九月的詩詞黃來綠去必然空,秋季年年一樣同。自是物歸于九月,何留萬 ......

    邯鄲市 日期:2023-05-06

  • 吸引客流的25個技巧,吸引顧客的方法

    吸引顧客的方法1、欣賞安全信號能招來大批顧客豐富的商品和突出的商品空間可以暗示顧客隨便參觀。用精致的飾品點綴商品空間可延長顧客的滯留時間。2、店員活動是吸引顧客的關鍵因素店員都緊張 ......

    邯鄲市 日期:2023-05-06

  • 孤掌難鳴的意思,成語孤掌難鳴是什么意思

    成語孤掌難鳴是什么意思孤掌難鳴(gūzhǎngnánmíng)解釋孤:單獨;鳴:叫。一個巴掌難以拍響,比喻力量孤單,難以成事。出處韓非《韓非子·功名》:“人主之患在莫之應,故曰:一 ......

    邯鄲市 日期:2023-05-06

  • 百日宴主持詞,兒子辦百日宴我上臺講什么

    兒子辦百日宴我上臺講什么2,高考百日主持串詞怎么寫3,寶寶百曰宴請小朋友主持主持詞怎么寫4,跪求答謝婚宴和孩子百天一起慶祝主持詞1,兒子辦百日宴我上臺講什么別準備稿詞,讓他自由發揮 ......

    邯鄲市 日期:2023-05-06

  • 小花的圖片,各種花圖和名稱

    各種花圖和名稱http://ci.baidu.com/v3cKbtlKca是什么花?2,鮮花圖片這很容易找啊,這里很多。http://image.baidu.com/i?z=0tn ......

    邯鄲市 日期:2023-05-06

  • 6級詞匯,英語6級單詞

    英語6級單詞2,英語6級都考哪些詞匯啊1,英語6級單詞不夠的,平時還是要多背多積累一些現在距離考試還有2個多月,還來得及,背單詞做試卷同步進行特別是在考前一周,多聽聽力,讓耳朵適應 ......

    邯鄲市 日期:2023-05-05

主站蜘蛛池模板: 长武县| 江山市| 彭阳县| 西乌| 新安县| 东莞市| 通江县| 和平县| 平度市| 卫辉市| 法库县| 石渠县| 菏泽市| 南郑县| 和静县| 信丰县| 沐川县| 闻喜县| 温州市| 惠水县| 同江市| 古丈县| 什邡市| 漠河县| 泗阳县| 玛沁县| 黄平县| 松滋市| 邢台市| 治县。| 扎兰屯市| 措勤县| 油尖旺区| 临城县| 宁河县| 迁安市| 华安县| 宁德市| 清河县| 镇雄县| 布尔津县|