色天下一区二区三区,少妇精品久久久一区二区三区,中文字幕日韩高清,91精品国产91久久久久久最新毛片

首頁 > 貴州 > 遵義市 > 常用三角函數,初中數學常用的三角函數

常用三角函數,初中數學常用的三角函數

來源:整理 時間:2023-02-05 08:11:06 編輯:好學習 手機版

本文目錄一覽

1,初中數學常用的三角函數

就是最基本的sin,cos,tan,cot了解他們之間的變換,加減π/2等等了解一下和差化積
正弦函數sin,余弦函數cos,正切函數tan,初中只有這三個三角函數,而且非常簡單,只要求會特定值即可,sin30=1/2=cos60
sin30=1/2,cos30=sin60,tan45=cot45=1
sin30=1/2.45=根號2/2.60=根號3/2,cos30=根號3/2.45=根號2/2.60=1/2,tan30=根號3/3.45=1.60=根號3
正弦函數sin,余弦函數cos,正切函數tan,余切函數cot,正割函數sec,余割函數csc。
新版的教材知要求掌握正弦,余弦,正切。其他的都刪了,而且只知道定義即可,基本運算都不必掌握。

初中數學常用的三角函數

2,三角函數有哪些

·兩角和與差的三角函數: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 三角函數恒等變形公式: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·商的關系: tanα=sinα/2)/[1+tan^2(α/正弦函數y=sinx余弦函數y=cosx正切函數y=tanx余切函數y=cotx正割函數y=secx余割函數y=cscx 或說成;b 余割函數 csc (A) =h/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化積公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/b 余切函數 cot(A)=b/: 同角三角函數間的基本關系式: ·平方關系;a 正割函數 sec (A) =h/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα ·半角公式;2)=sinα/a 注;[1-tan^2(α/2)] ·積化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/:a—所研究角的對邊 b—所研究的鄰邊 h—所研究角的斜邊 三角函數常用公式;cosα cotα=cosα/sinα ·倒數關系;sinα ·萬能公式: sinα=2tan(α/: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/(1+cosα)=(1-cosα)/:有以下公式:正弦函數 sin(A)=a/2)]/2]sin[(α-β)/h 正切函數 tan(A)=a/h 余弦函數 cos(A)=b/[1+tan^2(α/2)] tanα=2tan(α/2)/2)] cosα=[1-tan^2(α/
sin cos tan cot 。。

三角函數有哪些

3,常見的三角函數公式有哪些

三角函數公式包括和差角公式、和差化積公式、積化和差公式、倍角公式等。三角函數公式是數學中屬于初等函數中的超越函數的一類函數公式。它們的本質是任意角的集合與一個比值的集合的變量之間的映射,通常的三角函數是在平面直角坐標系中定義的。1、同角三角函數基本關系:倒數關系:tanα·cotα=1sinα·cscα=1cosα·secα=1商的關系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα2、兩角和公式:sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)3、倍角公式:tan2A = 2tanA/(1-tan2 A)Sin2A=2SinA·CosACos2A = Cos2A-Sin2 A=2Cos2 A-1=1-2sin2A4、三倍角公式:sin3A = 3sinA-4(sinA)3;cos3A = 4(cosA)3 -3cosAtan3a = tan a · tan(π/3+a)· tan(π/3-a)5、半角公式:sin(A/2) = √cos(A/2) = √tan(A/2) = √cot(A/2) = √tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)6、誘導公式:sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA7、萬能公式:sin(a) = [2tan(a/2)] / cos(a) = tan(a) = [2tan(a/2)]/8、和差化積:sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]tanA+tanB=sin(A+B)/cosAcosB9、積化和差:sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]

常見的三角函數公式有哪些

4,求三角函數大全

史上最全的(很多我自己都看不懂)!!!公式分類同角三角函數的基本關系  倒數關系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 商的關系: sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方關系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)平常針對不同條件的常用的兩個公式  sin2 α+cos2 α=1tan α *cot α=1一個特殊公式  (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)證明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)坡度公式  我們通常半坡面的鉛直高度h與水平高度l的比叫做坡度(也叫坡比), 用字母i表示,即 i=h / l, 坡度的一般形式寫成 l : m 形式,如i=1:5.如果把坡面與水平面的夾角記作a(叫做坡角),那么 i=h/l=tan a.銳角三角函數公式  正弦: sin α=∠α的對邊/∠α 的斜邊余弦:cos α=∠α的鄰邊/∠α的斜邊正切:tan α=∠α的對邊/∠α的鄰邊余切:cot α=∠α的鄰邊/∠α的對邊二倍角公式  正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推導 sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)^2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述兩式相比可得tan3a=tanatan(60°-a)tan(60°+a)n倍角公式sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n)。 其中R=2^(n-1)證明:當sin(na)=0時,sina=sin(π/n)或=sin(2π/n)或=sin(3π/n)或=……或=sin【(n-1)π/n】這說明sin(na)=0與sin【(n-1)π/n】=0是同解方程。所以sin(na)與而(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ),所以 與sina sin(a+π/n)……sin(a+(n-1)π/n)成正比(系數與n有關 ,但與a無關,記為Rn)。然后考慮sin(2n a)的系數為R2n=R2*(Rn)^2=Rn*(R2)^n.易證R2=2,所以Rn= 2^(n-1)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 和差化積sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)兩角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ積化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2雙曲函數sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a)公式一: 設α為任意角,終邊相同的角的同一三角函數的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 設α為任意角,π+α的三角函數值與α的三角函數值之間的關系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α與 -α的三角函數值之間的關系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α與α的三角函數值之間的關系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α與α的三角函數值之間的關系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α與α的三角函數值之間的關系: sin(π/2+α)= cosα cos(π/2+α)= -sinαtan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) =√√表示根號,包括誘導公式sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanαsin(π/2-α) = cosα cos(π/2-α) = sinαsin(π/2+α) = cosα cos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosAtan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα誘導公式記背訣竅:奇變偶不變,符號看象限萬能公式sinα=2tan(α/2)/[1+(tan(α/2))2]cosα=[1-(tan(α/2))2]/[1+(tan(α/2))2]tanα=2tan(α/2)/[1-(tan(α/2))2]其它公式(1) (sinα)2+(cosα)2=1(2)1+(tanα)2=(secα)2(3)1+(cotα)2=(cscα)2證明下面兩式,只需將一式,左右同除(sinα)2,第二個除(cosα)2即可(4)對于任意非直角三角形,總有tanA+tanB+tanC=tanAtanBtanC證:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得證同樣可以得證,當x+y+z=nπ(n∈Z)時,該關系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下結論(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC其他非重點三角函數 csc(a) = 1/sin(a) sec(a) = 1/cos(a)
誘導公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(pi/2-a)=cos(a) cos(pi/2-a)=sin(a) sin(pi/2+a)=cos(a) cos(pi/2+a)=-sin(a) sin(pi-a)=sin(a) cos(pi-a)=-cos(a) sin(pi+a)=-sin(a) cos(pi+a)=-cos(a) tga=tana=sina/cosa 兩角和與差的三角函數 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b)) tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b)) 三角函數和差化積公式 sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2) sin(a)?sin(b)=2cos((a+b)/2)sin((a-b)/2) cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2) cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2) 積化和差公式 sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)] 二倍角公式 sin(2a)=2sin(a)cos(a) cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a) 半角公式 sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 萬能公式 sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2)) tan(a)= (2tan(a/2))/(1-tan^2(a/2)) 其它公式 a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b] 1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2 其他非重點三角函數 csc(a)=1/sin(a) sec(a)=1/cos(a) 雙曲函數 sinh(a)=(e^a-e^(-a))/2 cosh(a)=(e^a+e^(-a))/2 tgh(a)=sinh(a)/cosh(a)
文章TAG:常用三角函數常用三角三角函數

最近更新

主站蜘蛛池模板: 连城县| 方城县| 木里| 嘉禾县| 商都县| 烟台市| 临高县| 大渡口区| 吴忠市| 改则县| 白玉县| 应城市| 太和县| 新泰市| 吕梁市| 特克斯县| 永德县| 松滋市| 中超| 田林县| 乾安县| 南雄市| 会泽县| 项城市| 哈巴河县| 英吉沙县| 新建县| 安仁县| 新津县| SHOW| 蓬溪县| 雷波县| 融水| 塘沽区| 嘉黎县| 项城市| 东台市| 龙南县| 泰来县| 孟连| 南郑县|